


## National

Assessment
Program Science Literacy Technical Report 2012

## NAP-SL 2012 Project Staff

Dr Sofia Kesidou from Educational Assessment Australia (EAA) was the Project Director of NAP-SL 2012. Jennifer Cowing (EAA) was the Project Manager. The test development team was led by Joe Merlino (EAA). The Public Report was written by Dr Sofia Kesidou, Dr Rassoul Sadeghi and Nicholas Marosszeky. The School Release Materials were written by Dr Sofia Kesidou, Jennifer Cowing, Joe Merlino and Dr Rassoul Sadeghi (EAA).

The sampling and data analysis tasks were undertaken by Dr Rassoul Sadeghi, Nicholas Marosszeky and Dr Edward Li from EAA and Dr Margaret Wu and Mark Dulhunty from Educational Measurement Solutions (EMS).
The Technical Report was written by Dr Rassoul Sadeghi, Nicholas Marosszeky and Dr Sofia Kesidou from EAA and Dr Margaret Wu and Mark Dulhunty from EMS.

Cover Photographs
Second and third from top: courtesy of Auburn West Public School and Our Lady of Fatima, Catholic Primary School, © Educational Assessment Australia

## © Australian Curriculum, Assessment and Reporting

## Authority 2013

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation.

All other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to:

ACARA Copyright Administration, ACARA
Level 10, 255 Pitt Street
Sydney
NSW 2000
Email: info@acara.edu.au

## Contents

Chapter 1
2012 National Assessment Program - Science Literacy: Overview ..... 1
1.1 Introduction ..... 1
1.2 Purposes of the Technical Report ..... 2
1.3 Organisation of the Technical Report ..... 2
Chapter 2
Test Development and Test Design ..... 3
2.1 Assessment domain ..... 3
2.2 Test blueprint ..... 4
2.3 Item development process ..... 6
2.4 Field trial of test items and Student Survey ..... 9
2.5 Item selection process for the final test ..... 13
2.6 Characteristics of the final assessment instrument ..... 14
2.7 Reports to schools ..... 16
Chapter 3
Sampling Procedures ..... 17
$3.1 \quad$ Overview ..... 17
3.2 Target population ..... 18
3.3 School and student non-participation ..... 19
3.4 Sampling size estimations ..... 20
3.5 Stratification ..... 21
3.6 Replacement schools ..... 24
$3.7 \quad$ Class selection ..... 24
3.8 The 2012 NAP-SL sampling frame ..... 25
3.9 The 2012 NAP-SL sample ..... 25
Chapter 4
Test Administration Procedures and Data Preparation ..... 27
4.1 Registration of classes and students ..... 27
4.2 Administering the tests to students ..... 27
4.3 Marking procedures ..... 29
4.4 Data entry procedures ..... 30
Chapter 5
Computation of Sampling Weights ..... 31
5.1 School weight ..... 31
5.2 Class weight ..... 32
5.3 Student weight ..... 33
5.4 Final weight ..... 34
Chapter 6
Item Analysis of the Final Test ..... 35
6.1 Item analyses ..... 35
6.2 Test design ..... 53
6.3 Item analysis files ..... 56
Chapter 7
Scaling of Test Data ..... 57
7.1 Overview ..... 57
7.2 Calibration sample ..... 57
7.3 Estimating student Proficiency Levels and producing plausible values ..... 60
7.4 Estimation of statistics of interest and their standard errors ..... 61
7.5 Transform logits to a scale with mean 400 and standard deviation 100 ..... 62
Chapter 8
Equating 2012 Resullts to 2006 Results ..... 63
8.1 Setting 2006 results as the baseline ..... 63
8.2 Equating 2012 results to 2006 results ..... 63
8.3 Equating transformation ..... 65
8.4 Link error ..... 65
Chapter 9
Scale and Proficiency Levels ..... 67
9.1 Proficiency Level cut-off points ..... 67
9.2 Proficiency Levels of items ..... 68
References ..... 71
Appendix 1
National Year 6 Primary Science Assessment Domain ..... 73
Assessment strands: Scientific literacy ..... 73
Scientific literacy: Progress Map ..... 74
Major scientific concepts in NAP-SL ..... 79
Appendix 2
Sample School Reports ..... 81
Appendix 3
Characteristics of the 2012 Sample ..... 87
Appendix 4
Technical Notes on Sampling ..... 91
Stratification details ..... 91
Random start and sampling interval values ..... 92
Appendix 5
Programming Notes on Sampling ..... 95
E. $1 \quad$ SPSS syntax for sample selection ..... 95
Appendix 6
Student Participation Form ..... 103
Appendix 7
Variables in File ..... 107
Appendix 8
ConQuest Control Fille for Producing Plausible Values ..... 109

## List of Tables

Table 2.1 Rotation design used in the 2012 NAP-SL final assessment ..... 5
Table 2.2 Criteria used in SLRC item reviews ..... 7
Table 2.3 Composition of the trial item pool (all released batches) ..... 8
Table 2.4 Composition of the final item pool ..... 14
Table 2.5 Breakdown of concept areas across the final objective and practical papers ..... 15
Table 2.6 Breakdown of strands across the final objective and practical papers ..... 15
Table 2.7 Breakdown of targeted levels across the final objective and practical papers ..... 15
Table 2.8 Breakdown of item types across the final objective and practical papers ..... 15
Table 2.9 Breakdown of logit scale location ranges (based on trial statistics) across the final objective and practical papers ..... 15
Table 3.1 Estimated 2012 Year 6 enrolment figures as provided by ACARA ..... 18
Table 3.2 NAP-SL exemption and refusal codes ..... 19
Table 3.3 Empirical design effect observed in 2009 ..... 20
Table 3.4 Proposed 2012 sample sizes for drawing samples ..... 21
Table 3.5 Proportions of schools by school size and jurisdiction ..... 23
Table 3.6 Number of schools by stratum to be sampled according to the sampling frame ..... 25
Table 3.7 2012 NAP-SL target and achieved sample sizes by jurisdiction ..... 25
Table 3.8 Student non-participation by jurisdiction ..... 26
Table 3.9 Empirical design effect observed in 2012 ..... 26
Table 4.1 Codes used in the Student Participation Form ..... 30
Table 6.1 Number of participating students by state and territory ..... 35
Table 6.2 Number of students by test booklet ..... 36
Table 6.3 Summary item statistics in 2012 ..... 38
Table 6.4 Booklet difficulty parameters ..... 41
Table 6.5 Item difficulty parameters for gender groups ..... 51
Table 6.6 Percentages of students omitting responses by item type ..... 53
Table 6.7 List of item codes and details ..... 54
Table 7.1 Codebook for CalibrationItems.dat ..... 58
Table 8.1 Example of link error application in calculating standard error of difference ..... 66
Table 9.1 Cut-off points for the 2012 NAP-SL ..... 67
Table 9.2 Proficiency Levels of items ..... 68
Table A1.1 Scientific Literacy Progress Map ..... 77
Table A1.2 Major scientific concepts in NAP-SL ..... 80
Table A3.1 Number of sampled schools and students in each jurisdiction ..... 87
Table A3.2 Comparison of selected sample and population sector proportions across jurisdictions ..... 88
Table A3.3 Comparison of population and selected sample proportions according to school size ..... 89
Table A4.1 The sort ordering procedures employed for small Catholic schools ..... 92
Table A4.2 Stratum variables for sample selection ..... 93
Table A7.1 File Name: NAPSL2012_PV_2013-03-11.sav ..... 107
Table A8.1 File Name: NAPSL2012_Produce_2012_PV.cqc ..... 109

## List of Figures

Figure 2.1 Test development work flow and quality assurance procedures ..... 6
Figure 2.2 Item-person map for the 211 trial items in the second analysis ..... 12
Figure 3.1 NAP-SL non-participation categories ..... 19
Figure 6.1 Item-person map ..... 37
Figure 6.2 Item analysis for item IDOB444 for VIC and NT ..... 43
Figure 6.3 Comparison of item difficulty parameters across states and territories ..... 45
Figure 6.4 Discrimination index by state/territory ..... 48
Figure 8.1 Calibrated item difficulties in 2006 and 2012 for the final link item set ..... 64

## Chapter 1

## 2012 National Assessment Program - Science Literacy: Overview

### 1.1 Introduction

In July 2001, the then Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA, now the Standing Council on School Education and Early Childhood (SCSEEC)) agreed to the development of assessment instruments and key performance measures for reporting on student skills, knowledge and understandings in primary science. It directed the newly established Performance Measurement and Reporting Taskforce (PMRT), a nationally representative body, to undertake the national assessment program. The PMRT commissioned the assessment in July 2001 for implementation in 2003. The Primary Science Assessment Program (PSAP) - as it was then known - tested a sample of Year 6 students in all states and territories. The second cycle of the assessment was conducted as the National Assessment Program - Science Literacy (NAP-SL) in October 2006, the third cycle was conducted in October 2009 and the fourth cycle was conducted in October 2012.

NAP-SL was the first assessment program designed specifically to provide information about performance against the National Goals for Schooling in the Twenty-First Century (now the Educational Goals for Young Australians). Subsequently, Ministers for Education also endorsed similar sample assessment programs to be conducted for Civics and Citizenship (CC) and Information and Communications Technology Literacy (ICTL). Each sample assessment program is repeated every three years so that performance in these areas of study can be monitored over time. The first cycle of each program was intended to provide the baseline data against which future performance could be compared.

In January 2011, the Australian Curriculum, Assessment and Reporting Authority (ACARA) awarded the contract for the fourth cycle of NAP-SL to Educational Assessment Australia (EAA). This report provides detailed information on test development, sampling, item analysis, equating and scaling of the fourth cycle of the science literacy assessment conducted in 2012.

### 1.2 Purposes of the Technical Report

This Technical Report aims to provide detailed information with regard to the conduct of the 2012 NAP-SL assessment so that valid interpretations of the 2012 results can be made, and future cycles can be implemented with appropriate linking information from past cycles. Further, a fully documented set of NAP-SL procedures can also provide information for researchers who are planning assessments of this kind. The methodologies used in the 2012 NAP-SL assessment can inform researchers of the current developments in large-scale assessments. They can also highlight the limitations and suggest possible improvements in the future. Consequently, it is of great importance to provide technical details on all aspects of the assessment.

### 1.3 Organisation of the Technical Report

This report is divided into nine chapters.

Chapter 2 provides an outline of the test development and test design processes, including trialling and item selection, and the assessment domain of scientific literacy.

The sampling procedures across jurisdictions, schools and classes are discussed in Chapter 3.

Chapter 4 includes information about how the tests were administered and marked, including coding for student demographic data and participation or non-inclusion. It also provides an explanation of the reporting processes.

Chapter 5 details the processes involved in computing the sampling weights.

Chapter 6 details the processes undertaken to analyse data obtained from the final test.

Chapter 7 provides an outline of the scaling procedures followed as part of the data analysis.

The equating procedures which were followed so that the 2012 results could be reported against the baseline established in 2006 are discussed in Chapter 8.

Chapter 9 provides a brief overview of the cut-off points at each proficiency level and information on the performance of the items on the proficiency scale.

Appendices $1-8$ provide further elaboration and exemplification of the information in the body of the Technical Report.

## Chapter 2

## Test Development and Test Design

### 2.1 Assessment domain

The National Assessment Program - Science Literacy (NAP-SL) measures scientific literacy. This is the application of broad conceptual understandings of science to make sense of the world, understand natural phenomena and interpret media reports about scientific issues. It also includes asking investigable questions, conducting investigations, collecting and interpreting data and making decisions. The construct evolved from the definition of scientific literacy used by the Organisation for Economic Co-operation and Development (OECD) - Programme for International Student Assessment (PISA):
... the capacity to use scientific knowledge, to identify questions and to draw evidence-based conclusions in order to understand and help make decisions about the natural world and the changes made to it through human activity.
(OECD 1999, p. 6o)

This definition has been adopted for the purpose of monitoring primary science in NAP-SL (Ball et al. 2000). The science items and instruments assess outcomes that contribute to scientific literacy, including conceptual understandings, rather than focusing solely on scientific knowledge. They also assess student competence in carrying out investigations in realistic situations.

A scientific literacy Progress Map (see Appendix 1) was developed in the first assessment cycle based on this construct of scientific literacy and on an analysis of the state and territory curriculum and assessment frameworks. The Progress Map describes the development of scientific literacy across three strands of knowledge which are inclusive of Ball et al.'s concepts and processes and the elements of the OECD-PISA definition.

As in the previous three cycles of NAP-SL, three main areas of scientific literacy were assessed in 2012:

Strand A: formulating or identifying investigable questions and hypotheses, planning investigations and collecting evidence

Strand B: interpreting evidence and drawing conclusions from students' own or others' data, critiquing the trustworthiness of evidence and claims made by others, and communicating findings

Strand C: using science understandings for describing and explaining natural phenomena, and for interpreting reports about phenomena.

In addition, the items drew on four major scientific concept areas: Earth and Space; Energy and Force; Living Things; and Matter. These concept areas, found most widely in state and territory curriculum documents, were used by item developers to guide item and test development. The list of endorsed examples for each of these concept areas is in Table A1.2 of Appendix 1.

A conscious effort was made to develop assessment items that related to everyday contexts. The intention was to ensure that all Year 6 students were familiar with the materials and experiences to be used in NAP-SL and so avoid any systematic bias in the instruments being developed.

### 2.2 Test blueprint

In response to the Australian Curriculum, Assessment and Reporting Authority's (ACARA's) Request for Tender for the 2012 NAP-SL assessment, Educational Assessment Australia (EAA) proposed the following assessment specifications:

It is anticipated that the 2012 final test forms will contain approximately 110 items in total (including link items from 2003, 2006 and 2009) providing sufficient assessment items for up to two hours of testing for each student in the national sample. This number of items will also provide items to form part of the School Release Materials for subsequent teacher use and items to be held secure for 2015.
... Three types of items will be developed: multiple-choice items, short constructed response items (requiring one or two word responses from students); and extended constructed response items requiring students to provide an extended response. For Year 6 students an extended response might reasonably be expected to be of the order of one or two sentences up to a short paragraph - if in text form or a diagram or constructed data table of equivalent detail.

Consistent with previous assessments, the balance of item types within the trial item pool is proposed to be: $50 \%$ multiple-choice; $10 \%$ short constructed response: $40 \%$ extended constructed response. This balance is
proposed on the basis that it is acknowledged that Year 6 students may be reluctant to provide overly lengthy written explanations to test questions. However, in order to assess the higher order skills demanded by upper levels of the framework it will be necessary to include some extended response items.

Due to the contextualised nature of the pencil-and-paper item sets and practical tasks, it is expected that the majority of item sets will contain a mix of item types.

These specifications were approved at the first meeting of the Science Literacy Review Committee (SLRC). In addition, it was confirmed that the balance between process items (Strands A and B) and conceptual items (Strand C) would be approximately in the proportion 50 per cent process and 50 per cent conceptual items.

### 2.2.1 Test design

In order to cover a wide range of content areas in science, but at the same time not to place too much burden on each student, the Balanced Incomplete Block rotation design was implemented. A rotation design allows a greater number of items to be assessed by using several booklets with different items rotated across them. It minimises the effect of biased item parameters caused by varying item positions arising from the placement of an item in a test booklet. Items were placed in 'clusters' and the clusters were rotated through the test forms, each appearing three times, each time in a different location ('block') in the test form. Seven test forms were developed for the final assessment. Table 2.1 shows the rotation design used in the 2012 NAP-SL final assessment.

Table 2.1 Rotation design used in the 2012 NAP-SL final assessment

| Booklet | Block 1 | Block 2 | Block 3 |
| :---: | :---: | :---: | :---: |
| 1 | Cluster 1 | Cluster 2 | Cluster 4 |
| 2 | Cluster 2 | Cluster 3 | Cluster 5 |
| 3 | Cluster 3 | Cluster 4 | Cluster 6 |
| 4 | Cluster 4 | Cluster 5 | Cluster 7 |
| 5 | Cluster 5 | Cluster 6 | Cluster 1 |
| 6 | Cluster 6 | Cluster 7 | Cluster 2 |
| 7 | Cluster 7 | Cluster 1 | Cluster 3 |

### 2.3 Item development process

### 2.3.1 Item development

Item development was undertaken by EAA. A process was developed to facilitate item writing in prescribed batches. The following flow chart (Figure 2.1) outlines the workflow and associated quality assurance procedures implemented at each stage of test development. As illustrated, the significant and explicit involvement of the SLRC was essential for the acceptance of items for trial. The progressive review of batches of items allowed many opportunities for the SLRC to provide input to the test development process.

Figure 2.1 Test development work flow and quality assurance procedures


Draft marking guides and item descriptors (identifying item demands by reference to the strands and levels of the assessment domain) were developed at the same time as the items themselves, and were reviewed accordingly.

EAA held review panels in-house prior to releasing materials for ACARA and SLRC reviews. Items and draft marking guides were reviewed for content accuracy, context and literacy demand. The purpose of the literacy demand review was to ensure that the language used in the items would be accessible to all students and that the use of unfamiliar and difficult vocabulary would be avoided, except where such use was necessary for subject-specific outcomes.

All developed test materials were reviewed by SLRC members via the Online Test Item Collection and Review System (OTICRS), a secure reviewing application developed by ACARA. Items were released progressively in batches between May and August 2011. Specific criteria were developed to guide the SLRC review (Table 2.2). SLRC members were asked to judge each item against the criteria and justify their judgments. Procedures were also established for recording and responding to feedback on tasks and items as the review processes proceeded. In addition, associated documentation was prepared including unit templates and a spreadsheet tracking each batch of items against the assessment specifications.

The OTICRS system allowed SLRC members to examine each item, provide detailed feedback and then recommend whether the item should progress with or without modification, or whether the item should be removed. All feedback was then collated and responded to by the test development team. The refined items were released to ACARA for sign off prior to the trial.

Table 2.2 Criteria used in SLRC item reviews
$\left.\left.\begin{array}{|l|l|}\hline \text { Criterion } & \text { Explanation } \\ \hline \text { Concept, Strand, Level } & \begin{array}{l}\text { Concept, strand and level are appropriate. }\end{array} \\ \hline \text { Descriptor } & \begin{array}{l}\text { Descriptor is appropriate. }\end{array} \\ \text { Key/Scoring guide, Distractors, Scientific one option is the possible answer. } \\ \text { accuracy } \\ \text { All distractors are plausible. } \\ \text { Scientific content of the stimulus is accurate. }\end{array}\right] \begin{array}{l}\text { The language demand (e.g. sentence length and } \\ \text { structure, word familiarity, etc) in the item is } \\ \text { appropriate. } \\ \text { The question or task is clearly stated, the wording } \\ \text { in stem and options is clear and concise. } \\ \text { The mathematics knowledge/skills needed to } \\ \text { respond to the item are appropriate. }\end{array}\right\}$

### 2.3.2 Pilot studies

Each practical task was piloted with at least two classes of Year 6 students to ensure that the activities proposed and the associated administration procedures could be implemented with ease in Year 6 classroom settings. A total of five schools participated in the pilot study, with multiple classes in each school. The pilot study also established the degree to which the proposed tasks were engaging for students. All the materials required to carry out the practical tasks were relatively simple in nature and were provided to schools by EAA. Simple materials were used in order to ensure that students would not be disadvantaged by their potentially limited familiarity with specialist science equipment which is more likely to be found in secondary school laboratories. After students completed the practical tasks, EAA staff conducted whole classroom discussions to assess whether the items were clear to students and to obtain insight into the cognitive processes that students engaged when responding to the items. Two EAA staff members experienced in cognitive interviewing conducted the debriefing for each practical task session, with one staff member asking students questions and the other taking notes. In all classes observed, students completed the tasks and associated questions in the allocated time. In all practical tasks, students had no difficulty manipulating the materials. Students found the practical tasks and the debriefing sessions engaging, as evidenced by their focus while conducting the activities and their enthusiasm answering the interviewers' questions. Instructions and items in the practical tasks were modified based on the pilot findings.

### 2.3.3 Items delivered

A total of 221 items were released for review prior to the trial, including 21 link items from the 2009 NAP-SL assessment. The final pool of trial items was approved by ACARA and the SLRC in August 2011.

Table 2.3 Composition of the trial item pool (all released batches)

|  | Pencil-and- <br> paper items | Practical task <br> items | Released total <br> pool |
| :--- | :---: | :---: | :---: |
| Major concept area: ES | 40 | 0 | 40 |
| Major concept area: EF | 42 | 29 | 71 |
| Major concept area: LT | 47 | 14 | 61 |
| Major concept area: M | 35 | 14 | 49 |
| Total | 164 | 57 | 221 |
| Strand A | 25 | 14 | $39(18 \%)$ |
| Strand B | 67 | 35 | $102(46 \%)$ |
| Strand C | 72 | 8 | $80(36 \%)$ |
| Total | 164 | 57 | 221 |
| Level 2 | 109 | 7 | $29(13 \%)$ |
| Level 3 | 33 | 38 | $147(67 \%)$ |
| Level 4 | 164 | 12 | $45(20 \%)$ |
| Total | 69 | 57 | 221 |
| Multiple choice | 22 | 9 | $78(35 \%)$ |
| Short answer | 73 | 9 | $31(14 \%)$ |
| Extended response | 164 |  | 39 |
| Total |  |  | 57 |

EAA developed eight trial test forms comprising 164 objective items and four trial practical tasks. The items were placed into clusters that were arranged into the trial forms so that each cluster appeared twice. The trial forms contained one cluster (cluster 8) comprising link items drawn from the secure item pool from 2009.

### 2.3.4 Student Survey

A student survey instrument was developed for trialling that was guided by the items and results of the 2009 Student Survey as well as by recommendations from the SLRC members. Survey items with scoring parameters were submitted to and reviewed by the SLRC and ACARA. Following feedback, 42 items were selected for trial. The areas covered by the trial student survey were:

- students' interest in science
- students' self-concept in science
- students' perceived value of science
- students' perceptions of science
- frequency of science-related activities outside school
- frequency of science-related activities at school
- students' experiences related to science teaching and investigations
- science topics studied at school.

The trial survey was produced on a scannable form. It was conducted following the administration of the trial objective and practical tasks.

### 2.4 Field trial of test items and Student Survey

A convenience sample of 30 schools across ACT, NSW, QLD, SA and WA participated in the trial in October 2011. The trial schools were selected to reflect the range of educational contexts around the nation and included schools from government, Catholic and independent sectors; low and high socioeconomic areas; metropolitan and regional locations; large and small schools; and students from a variety of language backgrounds.

In total, 1057 students from the trial schools across the five selected states and territories participated in the trial. Each student completed one of the eight trial objective test forms and one of the four practical tasks. Within each class teachers were asked to evenly distribute the eight trial objective test forms amongst students. On completion of the trial objective test forms students within a class were asked to separate into groups of three (or groups of two where necessary) for completion of the practical task. Students within the same class completed the same practical task.

Classroom teachers were provided with a Test Administrator's Manual in advance of the trial to allow them to familiarise themselves with the test administration procedures. A trained invigilator was sent to each trial school to deliver and collect the trial assessment materials (to ensure the security of the materials) and to also observe and support the classroom teacher throughout the assessment and Student Survey. At the completion of each assessment and Student Survey session the invigilator and the classroom teacher each completed a session report form to provide feedback about various aspects of the trial administration. This feedback, in conjunction with a range of other sources of feedback, informed the selection and refinement of items for the final pool of assessment items and for the final student survey.

### 2.4.1 Marking process

A team of experienced markers was engaged for a one-week period. The Test Development Manager and Project Director trained the markers and remained on-site to oversee the marking process. On completion of marking each cluster of items or practical task, a debriefing session was held with the test developers, amendments were made to the marking guides as necessary, and illustrative correct and incorrect responses obtained from the trial assessment were added to the marking guides.

### 2.4.2 Data analysis

The trial scores were data entered and then analysed by EAA's data analysis team using both ConQuest and RUMM software. The data were also sent to an external contractor, Educational Measurement Solutions (EMS), for parallel processing. The results of the parallel analyses were identical.

Key criteria for judging the performance of items were measures of item fit statistics (weighted MNSQ) and item performance illustrated by Item Characteristic Curves (ICCs). Percentage correct and point-biserial correlation were noted, but only informed decisions to eliminate items if other indices were poor. Ten items were removed due to poor fit statistics. The analysis was then repeated using the remaining 211 items (second analysis).

Differential Item Functioning analyses (DIF) ${ }^{1}$ for gender and language background (LBOTE) were carried out for all remaining items. However, DIF analysis results for LBOTE could not be considered due to the small sample size and the lack of information about specific language backgrounds provided by students who participated in the trial.

[^0]The DIF analyses for gender were carried out using ConQuest by fitting a facets model, where the interaction between an item and the gender group is estimated. When the interaction term is significantly different from zero at the 95 per cent confidence level, an item is deemed as showing DIF. An additional criterion applied was that a difference in item difficulty between boys and girls should be larger than 0.4 logits before the item is deemed to show large gender DIF.

In cases where items exhibited large gender DIF, content experts inspected the reasons for the observed bias. The items were flagged but not automatically removed simply based on statistical evidence of bias. Items were discarded only where there was agreement between the psychometric evidence and the content experts' review ${ }^{2}$. Inclusion of these items in the final assessment pool was monitored to ensure there was no gender DIF imbalance in the final assessment.

The remaining 211 items were further investigated for reverse thresholds. Two further items were eliminated in this process.

Figure 2.2 (Item-person map produced using ConQuest) illustrates diagrammatically the distribution of the 211 items (indicated by item identifiers) that were part of the second analysis of the trial data. The figure illustrates diagrammatically the distribution of all trialled items. It provides 'at a glance' the range of difficulty of the items and how they align with the ability of the students in the trial pool. The left-hand side of the X axis represents persons, the right-hand side represents items and the Y axis represents the logit scale. Each ' X ' represents 6.7 students.

As can be seen from Figure 2.2, the 2012 trial NAP-SL assessment achieved an excellent spread of item difficulties and was appropriately matched to the ability distribution of the Year 6 cohort tested. There were a number of items that all students found to be very easy, a number of items that were challenging (even for the most able students), and many items in the middle range. The average test difficulty in terms of item facility was between 50 per cent and 55 per cent.

Shown in red are the items that were eliminated because of reverse thresholds. Items highlighted in yellow ( 36 items) showed less optimal item fit (items with a weighted MNSQ smaller than 0.9 or greater than 1.1) or displayed large gender DIF. Items highlighted in green ( 173 items) were the best performing items (items with a weighted MNSQ larger than 0.9 or smaller than 1.1 and small or no gender DIF) and were given priority for inclusion in the final assessment item pool.

[^1]Figure 2.2 Item-person map for the 211 trial items in the second analysis


### 2.4.3 Reports to trial schools

Reports were developed and provided to schools that had participated in the trial. The reports were received in schools in December 2011. They contained a number of A4 sheets, one for each of the eight trial test booklets used in the assessment. Individual students' results were given for the test booklet which they completed in the assessment. In addition there was a school report for each of the practical tasks conducted by the school. An information sheet providing advice on interpreting the reports was also included.

### 2.5 Item selection process for the final test

### 2.5.1 Item selection for the objective and practical test

All trial items were provided to the SLRC to view on a refined version of OTICRS. Reviewers were invited to view the stimulus and item images as well as the associated metadata. These metadata included the key or marking guide and acceptable responses for constructed response items, and the following psychometric data obtained from the trial:

- facility (per cent correct)
- discrimination
- weighted MNSQ.

The results from the trial were discussed at a meeting with the SLRC in Sydney in March 2012. The pool of the 173 best performing items from the trial (see Figure 2.2) was approved for use in the 2012 assessment.

The following changes to the test administration were recommended (based on invigilator feedback) and agreed upon at the meeting:

- the teacher should read the introduction to the practical task to the students before distributing the practical task materials
- the students should be allocated reading time prior to starting the practical task.

In addition, where there were several consecutive items which had the same key, the SLRC recommended changing the order of distractors.

EAA developed a draft final list of preferred test items for 2012 based on feedback by the SLRC. The final pool of 112 test items was developed to reflect the best balance of items against the original assessment specifications. The final pool of test items was presented to ACARA and approved for use in the 2012 assessment. The pool included six link items from the 2003 assessment, 14 items from 2006, and 16 of the 21 items from the 2009 assessment that had been included in the 2012 trial.

### 2.5.2 Item selection for the Student Survey

Students' responses to the trialled survey questions were scanned and analysed. All items and results were presented to the SLRC in a secure document for their review. SLRC members were invited to comment on the items and prioritise their inclusion in the final Student Survey form. At the SLRC meeting in March 2012, members discussed the results and agreed on a final list of 34 survey items that would comprise the final Student Survey.

### 2.6 Characteristics of the final assessment instrument

The actual distribution of items across the assessment domain for scientific literacy (strands and major scientific concept areas) is shown in Table 2.4. There were 112 items distributed across the seven pencil-and-paper tests and two practical tasks. Each student had to sit one pencil-and-paper test and one practical task.

Table 2.4 Composition of the final item pool

| Domain | Item type and number of items |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Multiple <br> choice | Short <br> answer | Extended <br> response | Total |
| Distribution of items by strand |  |  |  |  |
| Strand A | 8 | 0 | 9 | 17 |
| Strand B | 17 | 6 | 19 | 42 |
| Strand C | 27 | 5 | 21 | 53 |
| Total | 52 | 11 | 49 | 112 |
| Distribution of items by major scientific concept area |  |  |  |  |
| Earth and Space (ES) | 13 | 2 | 5 | 20 |
| Energy and Force (EF) | 10 | 5 | 21 | 36 |
| Living Things (LT) | 17 | 1 | 11 | 29 |
| Matter (M) | 12 | 3 | 12 | 27 |
| Total | 52 | 11 | 49 | 112 |

The final composition of the items (112) included in the 2012 assessment instrument is shown in Tables 2.5 to 2.9.

Table 2.5 Breakdown of concept areas across the final objective and practical papers

| Paper type | Concept area |  |  |  | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | ES | EF | LT | M |  |
| Objective | 25 | 20 | 19 | 27 | 91 |
| Practical | 11 | 0 | 10 | 0 | 21 |
| Total | 36 | 20 | 29 | 27 | 112 |

Table 2.6 Breakdown of strands across the final objective and practical papers

| Paper type | Strand | Cotal |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | A | B | C |  |
| Objective | 14 | 26 | 51 | 91 |
| Practical | 3 | 16 | 2 | 21 |
| Total | 17 | 42 | 53 | 112 |

Table 2.7 Breakdown of targeted levels across the final objective and practical papers

| Paper type | Level |  |  | Total |
| :--- | :---: | :---: | :---: | :---: |
|  | 2 and below | $\mathbf{3}$ | 4 and above |  |
| Objective | $\mathbf{1 1}$ | 56 | 24 | 91 |
| Practical | 2 | 16 | 3 | 21 |
| Total | 13 | 72 | 27 | 112 |

Table 2.8 Breakdown of item types across the final objective and practical papers

| Paper type | Item type |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Multiple <br> choice | Short answer | Extended <br> response | Total |
| Objective | 46 | 10 | 35 | 91 |
| Practical | 6 | 1 | 14 | 21 |
| Total | 52 | 11 | 49 | 112 |

Table 2.9 Breakdown of logit scale location ranges (based on trial statistics) across the final objective and practical papers

| Paper type | Logit scale location ranges |  |  |  |  |  |  |  |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} -2.5 \\ \text { to } \\ -2.0 \end{gathered}$ | $\begin{gathered} -2.0 \\ \text { to } \\ -1.5 \end{gathered}$ | $\begin{gathered} -1.5 \\ \text { to } \\ -1.0 \end{gathered}$ | $\begin{gathered} -1.0 \\ \text { to } \\ -0.5 \end{gathered}$ | $\begin{gathered} -0.5 \\ \text { to } \\ 0.0 \end{gathered}$ | $\begin{gathered} 0.0 \\ \text { to } \\ 0.5 \end{gathered}$ | $\begin{gathered} 0.5 \\ \text { to } \\ 1.0 \end{gathered}$ | $\begin{gathered} 1.0 \\ \text { to } \\ 1.5 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & \text { to } \\ & 2.0 \end{aligned}$ | $\begin{gathered} 2.0 \\ \text { to } \\ 2.5 \end{gathered}$ | $\begin{gathered} 2.5 \\ \text { to } \\ 3.0 \end{gathered}$ | $\begin{gathered} 3.0 \\ \text { to } \\ 4.0 \end{gathered}$ |  |
| Objective | 3 | 4 | 4 | 5 | 4 | 14 | 6 | 7 | 5 | 1 | 1 | 1 | 55 |
| Practical | 2 | 1 | 4 | 2 | 3 | 3 | 2 | 1 | o | 1 | 1 | 1 | 21 |
| Total | 5 | 5 | 8 | 7 | 7 | 17 | 8 | 8 | 5 | 2 | 2 | 2 | 76 |

Note: Link items are not included in this table.

### 2.7 Reports to schools

Reports were developed and provided to schools that participated in the 2012 assessment. Schools received the reports in December 2012. The reports contained seven A4 sheets, one for each of the seven test booklets used in the final assessment. Individual students' results were given for the test booklet which they had completed in the assessment. In addition, there was a school report for the practical task conducted by the school. An information sheet providing advice on interpreting the reports was also included.

A sample school report can be found in Appendix 2. The school report includes a report for each objective booklet and a report for the practical task 'Reaction time'.

## Chapter 3

## Sampling Procedures

### 3.1 Overview

The desired (target) population for the National Assessment Program - Science Literacy (NAP-SL) consisted of all students enrolled in Year 6 in Australian schools in 2012.

As defined in the project specifications, the number of students sampled in each jurisdiction was determined with the following considerations in mind.

It was desirable that the estimated mean scores for all jurisdictions were of similar precision. While this was an ultimate goal, it was recognised that, in practice, reduced sample sizes would be needed for the smaller jurisdictions (i.e. ACT, NT and TAS). This is because most schools in the smaller jurisdictions would need to participate to form a large enough sample. As there are a number of national and international assessment projects implemented in Australia, many schools from the smaller jurisdictions would need to participate in multiple assessment projects, consequently putting more administrative burden on these schools, particularly the smaller schools.

The nationwide achieved sample was to be approximately 13000 students located within approximately 600 schools throughout Australia.

The sample design for NAP-SL was a two-stage stratified ${ }^{1}$ cluster sample. Stage 1 consisted of selecting schools that had Year 6 students. In this stage, schools were selected with probabilities proportional to their measure of size ${ }^{2}$. This selection procedure is referred to as 'probability proportional to size' (PPS) sampling. Stage 2 involved the random selection of one Year 6 intact class (or for some schools two or three classes) from each of the sampled schools selected in Stage 1.

For the first time, NAPLAN data were also included as an implicit stratification variable in the 2012 assessment (see section 3.5 for further information).

[^2]
### 3.2 Target population

The operational definition of the target population was a sampling frame which consisted of a list of all Australian schools and their 2011 Year 6 enrolment sizes as supplied by the Australian Curriculum, Assessment and Reporting Authority (ACARA).

Generally, large scale sample assessments of this type include provisions for excluding schools before the sampling of schools takes place. Schools might be excluded for reasons such as the school being located in a geographically remote location or of extremely small size. This approach was taken in 2003. However in 2006, 2009 and 2012, it was deemed desirable to include as many schools in the defined population as possible. Essentially this meant there were no school-level exclusions from the supplied sampling frame prior to sample selection. As such, the nationally defined population for the 2012 NAP-SL assessment was more inclusive than the 2003 defined population. However, the inclusion of schools that would previously have been excluded was expected to result in an increased non-response rate for the 2006, 2009 and 2012 assessments compared to the 2003 assessment. Consequently, a slightly inflated sample size was required to deal with this expected increase in non-response rate at the school level, so that the actual achieved numbers of schools and students in the sample were adequate.

In line with the procedures adopted in 2006 and 2009, if a small school (fewer than five students) was selected, then this school was only required to complete the pencil-and-paper tasks. In this way, very small schools were not excluded from the sample.

Table 3.1 shows the 2012 estimate of the number of educational institutions and students in the sampling frame for each jurisdiction, as provided by ACARA.

Table 3.1 Estimated 2012 Year 6 enrolment figures as provided by ACARA

| State / <br> Territory | Institutions | Students | Percentage of <br> students |
| :---: | :---: | :---: | :---: |
| ACT | 97 | 4503 | 1.6 |
| NSW | 2364 | 87709 | 32.1 |
| NT | 158 | 3198 | 1.2 |
| QLD | 1392 | 59231 | 21.7 |
| SA | 605 | 19326 | 7.1 |
| TAS | 221 | 6643 | 2.4 |
| VIC | 1766 | 62916 | 23.0 |
| WA | 883 | 29486 | 10.8 |
| AUST | 7486 | 273012 | 100.0 |

[^3]
### 3.3 School and student non-participation

In large scale assessments of this kind it is important to document reasons for non-participation so that interpretations of the main findings from the study can be appropriately made within the contexts of the assessment. As in the 2009 assessment, the 2012 study made provisions to document the reasons for school and student non-participation. Figure 3.1 lists the non-participation categories documented in the 2012 study whilst Table 3.2 details the exemption and refusal categories for non-participating schools and students.

Figure 3.1 NAP-SL non-participation categories
exemptions: exercise of principals' prerogative, subject to guidelines provided; and
refusals: specific parent objection to this form of assessment and consequential withdrawal of students from the program.

Table 3.2 NAP-SL exemption and refusal codes

## Code Category description

Not included; functional disability. Student has a moderate to severe permanent physical disability such that he/she cannot perform in the testing situation. Functionally disabled students who can respond to the assessment should be included.
12

Not included; intellectual disability. Student has a mental or emotional disability and is cognitively delayed such that he/she cannot perform in the testing situation. This includes students who are emotionally or mentally unable to follow even the general instructions of the assessment. Students should NOT be excluded solely because of poor academic performance or disciplinary problems.
Not included; limited assessment language proficiency. The student is unable to read or speak any of the languages of the assessment in the country and would be unable to overcome the language barrier in the testing situation. Typically a student who has received less than one year of instruction in the languages of the assessment may be excluded. refusal.

### 3.4 Sampling size estimations

To estimate the required sample size for each state and territory, the key consideration is the required degree of precision for the mean estimate of scientific literacy for each state and territory. As with many international studies of this kind, the stipulated precision for the estimated mean score for each state and territory is that the 95 per cent confidence interval around the estimated mean score should be within $+/-0.1 \mathrm{~s}$, where s is the standard deviation of the scientific literacy ability distribution in each jurisdiction. This degree of precision for the mean score corresponds to an effective sample size of 400 students. That is, if a simple random sample is taken, the required precision will be achieved with a sample size of 400. With assessments of this kind, simple random samples are usually not used because of logistical difficulties in administering tests in potentially 400 different locations. Consequently, less efficient sampling methods are used, and the required sample size needs to be larger than 400 . More specifically, when the design effect ${ }^{3}$ of the sample design is taken into account, the required sample size for each state and territory is given by:

$$
\begin{equation*}
n_{c}=n^{*} \times \operatorname{deff} \tag{1}
\end{equation*}
$$

where $n_{c}$ is the required sample size, $n^{*}$ is the effective sample size, and deff is the design effect.

The NAP-SL specifications set the target sample at 13000 students. The achieved precision of the statistics reported in the 2009 NAP-SL was analysed in order to establish whether the sample size of approximately 13000 students enabled the stipulated precision to be achieved. Table 3.3 contains a summary of the achieved standard error (SE) and confidence interval for each state and territory as well as the value of the desired confidence intervals that correspond to the stipulated precision of $+/-$ o.1s. The table below also contains the desired sample size that complies with the stipulated precision for each jurisdiction.

Table 3.3 Empirical design effect observed in 2009

| State/ <br> Territory | Mean | SE | Confidence <br> interval | Sample <br> size | Desired <br> confidence <br> interval | Empirical <br> design <br> effect | Desired <br> sample <br> size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACT | 415 | 5.4 | 10.6 | 1199 | 9.3 | 4.1 | 1627 |
| NSW | 396 | 6.2 | 12.1 | 2092 | 9.8 | 8.3 | 3311 |
| NT | 326 | 14.6 | 28.6 | 743 | 12.8 | 9.7 | 3868 |
| QLD | 385 | 4.5 | 8.9 | 2043 | 9.3 | 4.9 | 1961 |
| SA | 380 | 5.3 | 10.4 | 1848 | 9.2 | 6.2 | 2478 |
| TAS | 386 | 6.9 | 13.5 | 1167 | 9.6 | 6 | 2407 |
| VIC | 398 | 4.7 | 9.2 | 2040 | 8.7 | 5.9 | 2346 |
| WA | 393 | 4.9 | 9.6 | 2030 | 9.5 | 5.4 | 2161 |
| Total |  |  |  | 13162 |  |  | 20158 |

[^4]As can be seen from Table 3.3, the analysis showed that the 2009 sample size for each state and territory was underestimated relative to the sample size that has the capacity to provide the stipulated precision (except for QLD). In order to rectify this problem it was proposed that the 2012 sample size be increased according to the magnitude of the design effect empirically established in 2009. However, this proposition was not approved by ACARA and the brief was issued that the 2012 sample size should approximate that of 2009. Consequently the proposed target sample size for 2012 was set equal to that for 2009 and is shown in Table 3.4.

Table 3.4 Proposed 2012 sample sizes for drawing samples

| State / <br> Territory | Students | Schools |
| :---: | :---: | :---: |
| ACT | 1400 | 58 |
| NSW | 2100 | 92 |
| NT | 950 | 50 |
| QLD | 2100 | 91 |
| SA | 2100 | 94 |
| TAS | 1400 | 63 |
| VIC | 2100 | 92 |
| WA | 2100 | 93 |
| Total | 14250 | 633 |

### 3.5 Stratification

The sample methodology for the 2009 cycle of the NAP-SL was finalised in 2008. Since then, National Assessment Program - Literacy and Numeracy (NAPLAN) data have been collected annually for the full cohort of Australian schools. It was proposed that NAPLAN results be included as an additional implicit stratification variable for sampling in the 2012 NAP-SL assessment cycle. It was anticipated this would lead to increased precision in the estimates of Science Literacy without increasing the sample size, provided NAPLAN achievement was associated with achievement in Science Literacy.

The sampling frame was partitioned into 24 separate school lists with each list being a unique combination of state and territory (8) and school type (3 - government, Catholic and other). This explicit stratification was performed to ensure that an adequate number of students were sampled from each school type in each jurisdiction. Within each of the separate strata, schools were ordered (implicitly stratified) firstly according to their 2010 NAPLAN quintile rank, then by geographic location ${ }^{4}$ and then according to their measure of size - which was related to the estimated number of Year 6 enrolments ${ }^{5}$. For most schools, the Measure of Size (MOS) was set to the 2011 Year 6 enrolment size (ENR) of the school. A school's MOS was adjusted if the school had a small or, alternatively, a very large number of Year 6 students.

[^5]Whilst sampling methods for both these school types are described in more detail in the subsequent sections, in general small schools had their MOS adjusted so that their selection in the sample would not result in excessively large sampling weights. In addition, very large schools had their MOS reduced so that they were not selected more than once.

The sample selection procedures were based on the Target Cluster Size (TCS) which was an estimate of the average class size in Australia. The TCS was set at 25 which was the same as for the 2009 NAP-SL assessment (National Assessment Program - Science Literacy Technical Report 2009, Section 3.5). Schools with an enrolment size less than the TCS had a MOS set to the average enrolment size of the same category of small schools within each jurisdiction. This was performed to prevent excessively large sampling weights and was only applied after stratification had occurred.

### 3.5.1 Small schools

If a large number of schools that were sampled had an ENR less than the TCS, then the actual number of students sampled could be less than the overall target sample. Schools with enrolment sizes less than the TCS are classified as small schools in both OECD (2012) and IEA (2009); however these studies have different approaches for the treatment of small schools within the sampling frame. In the 2012 NAP-SL, OECD (2012) guidelines were utilised for classifying and stratifying small schools, whilst an adapted version of IEA's (2009) treatment of small school MOS values was used.

As a preliminary exercise, schools were classified into different sizes according to OECD (2012, p. 68) classification rules: Large (MOS >= 25) and Small schools which were sub-divided into either Moderately Small (TCS/2 <= MOS < TCS) or Very Small (MOS < TCS/2) schools.

Table 3.5 shows the proportions of Large, Moderately Small and Very Small schools within each jurisdiction. It can be seen that there are many small schools in each jurisdiction. As such, it was important that an appropriate strategy was utilised to prevent an over-selection of small schools, which would have resulted in a lower sample size than the desired target sample size.

OECD (2012) guidelines were used for classifying and stratifying small schools, which involved deliberately under-sampling small schools and slightly oversampling large schools. This ensured that small schools were represented in the sample while still achieving an adequate overall student sample size without substantially increasing the total number of schools sampled (see OECD 2012, pp. 68-74).

The MOS for a small school was set to the average ENR of all schools within the same explicit stratum and school size category. This strategy was adapted from the IEA (2009) approach to ensure that selection of very small schools would not result in excessively large sampling weights (see IEA 2009, pp. 85-87, section 5.4.2).

Table 3.5 Proportions of schools by school size and jurisdiction

| State / Territory | School size | No. Schools | Percentage of schools | No. Students | Percentage of students |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ACT | Large | 77 | 79.4 | 4190 | 93.0 |
|  | Moderately small | 14 | 14.4 | 268 | 6.0 |
|  | Very small | 6 | 6.2 | 45 | 1.0 |
|  | Total | 97 | 100.0 | 4503 | 100.0 |
| NSW | Large | 1386 | 58.6 | 77362 | 88.2 |
|  | Moderately small | 379 | 16.0 | 7001 | 8.0 |
|  | Very small | 599 | 25.3 | 3346 | 3.8 |
|  | Total | 2364 | 100.0 | 87709 | 100.0 |
| NT | Large | 55 | 34.8 | 2355 | 73.6 |
|  | Moderately small | 26 | 16.5 | 454 | 14.2 |
|  | Very small | 77 | 48.7 | 389 | 12.2 |
|  | Total | 158 | 100.0 | 3198 | 100.0 |
| QLD | Large | 799 | 57.4 | 53691 | 90.6 |
|  | Moderately small | 171 | 12.3 | 3161 | $5 \cdot 3$ |
|  | Very small | 422 | 30.3 | 2379 | 4.0 |
|  | Total | 1392 | 100.0 | 59231 | 100.0 |
| SA | Large | 324 | 53.6 | 15923 | 82.4 |
|  | Moderately small | 132 | 21.8 | 2464 | 12.7 |
|  | Very small | 149 | 24.6 | 939 | 4.9 |
|  | Total | 605 | 100.0 | 19326 | 100.0 |
| TAS | Large | 118 | 53.4 | 5453 | 82.1 |
|  | Moderately small | 40 | 18.1 | 747 | 11.2 |
|  | Very small | 63 | 28.5 | 443 | 6.7 |
|  | Total | 221 | 100.0 | 6643 | 100.0 |
| VIC | Large | 1021 | 57.8 | 54229 | 86.2 |
|  | Moderately small | 328 | 18.6 | 6131 | 9.7 |
|  | Very small | 417 | 23.6 | 2556 | 4.1 |
|  | Total | 1766 | 100.0 | 62916 | 100.0 |
| WA | Large | 518 | 58.7 | 25847 | 87.7 |
|  | Moderately small | 119 | 13.5 | 2163 | $7 \cdot 3$ |
|  | Very small | 246 | 27.9 | 1476 | 5.0 |
|  | Total | 883 | 100.0 | 29486 | 100.0 |

Note: Some percentages may not add up to 100 due to rounding

## 3-5.2 Very large schools

Selecting schools with a probability proportional to size (PPS) can result in a school being sampled more than once if its ENR is sufficiently large. This can occur when the school enrolment size is larger than the explicit stratum sampling interval. To overcome this, very large schools had their MOS set equal to the size of the sampling interval of the explicit stratum that the school belonged to (an option that was utilised in IEA 2009, pp. 85-87, section 5.4.2).

### 3.6 Replacement schools

Replacement schools were included in the sample to help overcome problems in relation to school non-participation. There is a risk in any sample assessment that, if the non-participation rate is high, then the target sample sizes will not be achieved. Further, if non-participating schools tend to be lower performing schools, then a bias in the estimated achievement levels will likely occur.

If a school elected not to participate for some reason, then a replacement school was selected for inclusion in the sample. Replacement schools were assigned as per PISA procedures (OECD 2012, p. 67). That is, for a sampled school, the school immediately following it in the sampling frame was assigned as the first replacement school for it, and the school immediately preceding it was assigned as the second replacement school.

### 3.7 Class selection

One class containing Year 6 students was sampled per school. In some schools where there were several Year 6 classes, each with a small number of Year 6 students, the classes were combined to create a pseudo-class, where possible. Classes generally had equal probabilities of selection. The overall procedure for class selection was as follows:

1. Small classes were combined to create a pseudo-class.
2. Each natural or pseudo-class (referred to as a cluster) was assigned a random number.
3. The clusters in a school were ordered by the assigned random numbers.
4. The first cluster on each school's ordered list was chosen for the sample.

### 3.7.1 Small classes

In a number of cases, schools had multi-level or remedial classes that contained small numbers of Year 6 students. If many of these small classes are selected, the total sample size will likely be less than the original target sample size, as the class size for these classes is much smaller than the average class size of 25 . Twenty-five was determined as the basis for the estimation of the number of schools and classes to be selected.

To overcome this problem, a strategy was employed that built on the procedures used by IEA (2009). Classes with fewer than 15 students were combined with another Year 6 class at the same school. The resulting pseudo-class was considered a single class for sampling purposes.

### 3.8 The 2012 NAP-SL sampling frame

Table 3.6 outlines the sampling frame for the number of schools by stratum to be sampled using the procedures outlined in the previous sections. Further details on the characteristics of the schools actually sampled are included in Appendix 3.

Table 3.6 Number of schools by stratum to be sampled according to the sampling frame

| State / Territory | Proposed target sample size for 2012 | Number of schools by stratum |  |  |  |  | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Very small | Moderately small | Large Catholic | Large govt | Large other |  |
| ACT | 1400 | 1 | 4 | 15 | 30 | 7 | 58 |
| NSW | 2100 | 7 | 9 | 15 | 52 | 9 | 92 |
| NT | 950 | 12 | 8 | 4 | 23 | 3 | 50 |
| QLD | 2100 | 8 | 6 | 14 | 54 | 10 | 91 |
| SA | 2100 | 8 | 15 | 14 | 44 | 13 | 94 |
| TAS | 1400 | 7 | 9 | 8 | 35 | 4 | 63 |
| VIC | 2100 | 7 | 11 | 17 | 48 | 10 | 92 |
| WA | 2100 | 9 | 9 | 13 | 51 | 11 | 93 |
| Total | 14250 | 59 | 71 | 100 | 336 | 67 | 633 |

Note: Numbers may not add up to the total due to rounding.

### 3.9 The 2012 NAP-SL sample

Table 3.7 provides a breakdown of the sample according to jurisdiction. The target sample is the number of Year 6 students enrolled at the time of testing in the sampled schools. The achieved sample is the number of Year 6 students who participated (attempted the test).

Table 3.7 2012 NAP-SL target and achieved sample sizes by jurisdiction

| State / | Number of students enrolled at <br> the time of testing | Number of students who <br> participated in the test |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Territory | Students | Percentage of <br> students | Students | Percentage of <br> students |
| ACT | 1305 | 8.9 | 1242 | 9.4 |
| NSW | 2246 | 15.3 | 2060 | 15.6 |
| NT | 959 | 6.5 | 710 | 5.4 |
| QLD | 2207 | 15.0 | 2052 | 15.5 |
| SA | 2082 | 14.2 | 1926 | 14.6 |
| TAS | 1420 | 9.7 | 1259 | 9.5 |
| VIC | 2112 | 14.4 | 1854 | 14.0 |
| WA | 2344 | 16.0 | 2133 | 16.1 |
| Total | 14675 | 100.0 | 13236 | 100.0 |

Note: Numbers may not add up to 100 due to rounding.

The numbers of non-participating students are provided in Table 3.8, broken down by jurisdiction and reason for non-participation.

Table 3.8 Student non-participation by jurisdiction

| State / <br> Territory | Absent | Functional <br> disability | Intellectual <br> disability | Limited <br> language <br> proficiency | Student <br> or parent <br> refusal | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACT | 54 | 1 | 6 | 2 | 0 | 63 |
| NSW | 181 | 0 | 3 | 0 | 2 | 186 |
| NT | 227 | 1 | 4 | 13 | 4 | 249 |
| QLD | 124 | 5 | 16 | 7 | 3 | 155 |
| SA | 141 | 3 | 6 | 3 | 3 | 156 |
| VIC | 143 | 2 | 8 | 5 | 3 | 161 |
| TAS | 215 | 1 | 9 | 7 | 26 | 258 |
| WA | 190 | 3 | 9 | 8 | 1 | 211 |
| AUST | 1275 | 16 | 61 | 45 | 42 | 1439 |

The 2012 NAP-SL results were analysed in order to assess the magnitude of the misalignment between the sample size and the precision requirement of $+/-0.1 \mathrm{~s}$ because the analysis of the design effect for 2009 showed that the planned sample size was not large enough to provide the stipulated precision. As can be seen in Table 3.9, the 2012 sample size did not include a sufficient number of students in order to comply with the stipulated precision for some jurisdictions. The design effect observed in 2012 was smaller than observed in 2009 (Table 3.3) for some jurisdictions. This may be due to the inclusion of NAPLAN results as an implicit stratification variable in 2012.

Table 3.9 Empirical design effect observed in 2012

| State / <br> Territory | Mean | SE | Confidence <br> interval | Sample <br> size | Desired <br> confidence <br> interval | Empirical <br> design <br> effect | Desired <br> sample <br> size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ACT | 429 | 6.7 | 13.2 | 1242 | 9.5 | 6.2 | 2486 |
| NSW | 395 | 5.1 | 9.9 | 2060 | 9.9 | 5.4 | 2145 |
| NT | 319 | 15.9 | 31.1 | 710 | 13.3 | 10.1 | 4051 |
| QLD | 392 | 3.3 | 6.4 | 2052 | 9.4 | 2.5 | 1012 |
| SA | 392 | 4.0 | 7.9 | 1926 | 9.3 | 3.6 | 1425 |
| TAS | 395 | 6.3 | 12.3 | 1259 | 10.1 | 4.9 | 1967 |
| VIC | 393 | 5.0 | 9.7 | 1854 | 9.3 | 5.3 | 2115 |
| WA | 406 | 4.9 | 9.5 | 2133 | 10.1 | 4.9 | 1956 |
| Total |  |  |  | 13236 |  |  | 17157 |

Additional technical specifications can be found in Appendices 5 and 6.

## Chapter 4 <br> Test Administration Procedures and Data Preparation

### 4.1 Registration of classes and students

For most jurisdictions, School Contact Officers nominated by the sample schools were informed that they were to register their students using the templates provided by EAA. In some jurisdictions the student registration task was completed centrally. The student registration procedures were designed so that student information could be collected, coded and then used for further analysis. Registration of students prior to the test day also allowed EAA to overprint the test booklets with individual student details and provide students with the practical task allocated to their classes. These steps also ensured that every student received the correct practical task materials and that student details could be cross-checked.

### 4.2 Administering the tests to students

The final assessments were administered to the sampled students in October 2012. The participating schools were sent the following materials: a School Contact Officer's Manual (sent on behalf of ACARA in June 2012 along with a brochure for teachers and a brochure for parents explaining the assessment), the Test Administrator's Manual and the assessment instruments, together with the appropriate practical materials for the particular task being undertaken and the Student Survey. Detailed instructions were also given in relation to the participation or exclusion of students with a disability and students from non-English speaking backgrounds.

The teachers were able to review the Test Administrator's Manual before the assessment date and raise questions with EAA or the coordinators of the National Assessment Program - Science Literacy (NAP-SL) in their jurisdiction. EAA provided a toll-free telephone number and an email address so that any queries from teachers could be quickly addressed.

The assessment instruments were administered to a sample consisting of 4.85 per cent of the total Australian Year 6 student population. Tests were administered on the following dates:

- 17 October 2012 - New South Wales, Northern Territory, Queensland, South Australia, Tasmania and Victoria
- 24 October 2012 - Australian Capital Territory and Western Australia

Students' regular class teachers administered the tests in order to minimise disruption to the normal class environment. Teachers followed the standardised test administration procedures in the Test Administrator's Manual.

Teachers were required to complete a Student Participation Form, confirming details about any student who had not participated in or had been excluded from the assessment (see Appendix 6 Student Participation Form).

A quality-monitoring program was established to gauge the extent to which class teachers followed the specified administration procedures. This involved trained observers monitoring the administration of the assessment in a representative sample of classes in 32 (approximately five per cent) of the participating schools.

The test observers were required to complete a report for each assessment they observed. They recorded the timing of the assessment, variations in administration procedures and any problems or disturbances which occurred. Their reports indicate a high degree of conformity by schools with the administration procedures. In particular:

- All test observers reported that the timing for the objective part of the assessment was appropriate. In all schools but one, it was reported that all students finished the objective part of the assessment within the allocated time. One test observer noted that four students did not finish the objective assessment within the allocated time. Four test observers noted that more time was needed for the introduction, instructions and materials distribution for the practical tasks. One observer commented that the teacher had to give instructions at a slower pace to accommodate the language requirements of students with special needs.
- The teachers' test instructions to classes in four schools were noted as having varied from the script in the Test Administrator's Manual. In all cases these variations were considered to have been minor (e.g. re-reading instructions for the practical task after one student returned late from a break, and a short interruption from reading the introduction script due to a brief administrative phone call). Test observers reported that these variations to the test administration script did not affect student performance.
- All test observers reported that the locations of the assessment sessions met the requirements set out in the Test Administrator's Manual. Low levels of disruptive student behaviour were recorded by three test observers (e.g. students murmuring, laughing or disturbing each other). Other minor disruptions were recorded during the administration of the assessment. These included brief announcements, noise from other classrooms and visits to the class by other teachers.


### 4.3 Marking procedures

Each multiple-choice item had only one correct answer. The open-ended items required students to construct their own responses. The open-ended items were further categorised into items that required a single-word or short-sentence response and those that required a more substantive response (referred to as 'extended-response' items). Some open-ended items had polytomous scores. That is, students could score either one mark or two marks depending on the achievement level demonstrated by their response.

Over half of the items were open-ended and required marking by trained markers.

Marking guides were prepared by EAA and refined during the trialling process. The marking team included experienced teacher markers employed by EAA.

The markers participated in a one-and-a-half day training session led by the Test Development Manager. The session involved formal presentations followed by hands-on practice with pre-marked sample student answer booklets. Presentations included leading markers through an overview of each cluster or practical task and discussing the marking criteria and illustrative answers for correct and incorrect student responses exemplified in the marking guides. In the hands-on practice, markers practised marking with a pre-marked sample of items and discussed the scores assigned to each item to help clarify distinctions between score levels. At the end of the session, all markers were asked to mark the same set of student answer booklets. The scores were compared to the scores agreed to by expert scorers (the Project Director, the Test Development Manager and the group leaders). Trainers discussed with markers agreements and disagreements between their scores and the scores given by expert scorers. Additional practice was provided to markers for items on which consistency and accuracy were low.

Markers were monitored constantly for reliability by having samples of their student answer booklets check-marked by group leaders. In cases where there were differences between markers and group leaders, the scoring was reconciled jointly in consultation with the Test Development Manager. In addition, once a day all markers were asked to mark the same set of student answer booklets. The scores were compared to the scores agreed to by expert scorers and differences were discussed and reconciled.

In addition, approximately five per cent of the 2009 trend item responses were re-marked by the 2012 markers to ensure the reliability of marking. These procedures, coupled with the intensive training at the beginning of the marking exercise, ensured that markers applied the scoring criteria consistently and accurately.

### 4.4 Data entry procedures

The multiple-choice responses and teacher marked scores were data processed. A validation of the data processing ensured accuracy in data capture.

Scanning software was used to capture images of all the student responses. The resulting image files have been indexed and provided to ACARA for future reference.

Demographic information and information collected to determine student inclusion in the testing population was obtained from participating schools using the Student Participation Form (SPF). The SPF consisted of two parts: Part A was designed to collect information about the school (including information about the number of students enrolled in Year 6 and the number of classes in Year 6) and Part B was designed to collect relevant information about individual students. A sample of the SPF can be found in Appendix 6.

### 4.4.1 Data coding rules

Data coding rules for collecting student inclusion information in the SPF are explained in full on pages 8 to 10 of the Test Administrator's Manual. Table 4.1 contains codes that were used and their explanation.

Table 4.1 Codes used in the Student Participation Form

| Special education needs codes |
| :--- |
| $\mathbf{0}=$ No special education needs |
| $\mathbf{1}=$ Functional disability |
| 2 = Intellectual disability |
| 3 = Limited test language proficiency |
| Non-inclusion codes |
| $10=$ Absent |
| $11=$ Not included; functional disability |
| $12=$ Not included; intellectual disability |
| $13=$ Not included; limited test language proficiency |
| $14=$ Student or parent refusal |
| Indigenous codes |
| $\mathbf{1}=$ Aboriginal but not Torres Strait Islander origin |
| $2=$ Torres Strait Islander but not Aboriginal origin |
| $3=$ Both Aboriginal and Torres Strait Islander origin |
| $4=$ Neither Aboriginal nor Torres Strait Islander origin |
| $9=$ Not stated/unknown |

## Chapter 5

## Computation of Sampling Weights

The sampling weights calculated for the National Assessment Program - Science Literacy (NAP-SL) were based on procedures detailed in the TIMSS 2007 Technical Report (IEA 2009). The procedures outlined in this document were designed for several different sampling scenarios. Only the procedures relevant to the NAP-SL context are presented here.

### 5.1 School weight

### 5.1.1 School base weight

School level base weight for school $i$

$$
\begin{equation*}
B W_{s c}^{i}=\frac{M}{n \cdot m_{i}} \tag{2}
\end{equation*}
$$

where $n$ was the total number of schools sampled within each explicit stratum and $m_{i}$ was the Measure of Size (MOS) assigned to the $i^{\text {th }}$ school, and

$$
\begin{equation*}
M=\sum_{i=1}^{N} m_{i} \tag{3}
\end{equation*}
$$

where $N$ was the total number of schools (i.e. both sampled and not sampled) in the explicit stratum.

For small school strata, schools were assigned equal MOS values. Small school sampling weights, using the above equations, can be given by:

$$
B W_{s c}^{i}=\frac{N \cdot m_{i}}{n \cdot m_{i}}
$$

(4)

This can be simplified to:

$$
B W_{s c}^{i}=\frac{N}{n}
$$

(5)

### 5.1.2 School non-participation adjustment

School level base weights were calculated for all sampled and replacement schools that satisfied the condition that more than 50 per cent of the eligible students actually participated in the study. In total, 633 schools were sampled of which there
were 16 schools that did not participate in the testing (and could not be replaced). Three schools were found to be ineligible in that there were no Year 6 students enrolled at the school at the time of testing. The remaining 13 schools were either exempted from testing or did not participate for some other reason.

A school-level non-response adjustment was calculated separately for each explicit stratum to account for schools that were sampled but did not participate. Such an adjustment means that the final school weights will be representative of the whole population of Year 6 students rather than the population directly represented by the participating schools.

Specifically, the non-response adjustment was calculated as:

$$
\begin{equation*}
A_{s c}=\frac{n_{s}+n_{r 1}+n_{r 2}+n_{n r}}{n_{s}+n_{r 1}+n_{r 2}} \tag{6}
\end{equation*}
$$

where:
$n_{s}$ was the number of originally sampled schools that participated
$n_{r 1}$ and $n_{r 2}$ was the number of first and second replacement schools, respectively, that participated, and
$n_{n r}$ was the number of schools that did not participate.

Note that the three ineligible schools were not included in the calculation of this adjustment ${ }^{1}$.

### 5.1.3 Final school weight

The final school weight was then the product of the school base weight and nonparticipation adjustment:

$$
\begin{equation*}
F W_{s c}^{i}=B W_{s c}^{i} \cdot A_{s c} \tag{7}
\end{equation*}
$$

### 5.2 Class weight

Typically, when a class is selected at random, the probability of selection for the class is $1 / n$, where $n$ is the total number of eligible classes in that school. Consequently, the class weight is $n$.

However, it should be noted that, while an average class size of 25 students is assumed, a considerable number of classes have around 13-15 students. Pseudoclasses were created prior to class selection using the process described in

[^6]Chapter 3. Each natural class or pseudo-class within a school was then allocated a cluster ID. Each cluster had an equal probability of being selected. Consequently, class weights were simply equal to the number of clusters at a particular school.

### 5.2.1 Class base weight

When classes/clusters were selected with equal probability, the base class weight is given by:

$$
\begin{equation*}
B W_{c l 1}^{i}=\frac{C^{i}}{c^{i}} \tag{8}
\end{equation*}
$$

where $C^{i}$ is the total number of classes for the $i^{\text {th }}$ school and $c^{i}$ is the total number of sampled classrooms. For NAP-SL only one class/cluster was selected per school, so the base class weight is simply equal to the number of unique clusters at the school:

$$
\begin{equation*}
B W_{c l 1}^{i}=C^{i} \tag{9}
\end{equation*}
$$

### 5.2.2 Final class weight

The final class weight is equal to the base class weight since classes were selected with equal probabilities.

$$
\begin{equation*}
F W_{c l}^{i}=B W_{c l}^{i} \tag{10}
\end{equation*}
$$

### 5.3 Student weight

### 5.3.1 Student base weight

Each student in the sampled class was certain of selection at the student level. The student base weight was therefore equal to 1 for all students.

$$
\begin{equation*}
B W_{s t}^{i}=1.0 \tag{11}
\end{equation*}
$$

### 5.3.2 Student non-participation adjustment

A student non-participation adjustment was calculated for any school that had at least one student who was eligible to do the test but did not participate for some reason ${ }^{2}$. This was given by:

$$
\begin{equation*}
A_{s t}^{i}=\frac{s_{r s}^{i}+s_{n r}^{i}}{s_{r s}^{i}} \tag{12}
\end{equation*}
$$

where $s_{r s}^{i}$ was the number of eligible students that participated, and $s_{n r}^{i}$ was the number of eligible students that did not participate, at the $i^{\text {th }}$ school.

[^7]
### 5.3.3 Final student weight

The final student weight is then equal to the product of the student base weight and non-participation adjustment.

$$
\begin{equation*}
F W_{s t}^{i}=B W_{s t}^{i} \cdot A_{s t}^{i} \tag{13}
\end{equation*}
$$

This simplifies to:

$$
\begin{equation*}
F W_{s t}^{i}=A_{s t}^{i} \tag{14}
\end{equation*}
$$

That is, the student final weight is equal to the student non-participation adjustment.

### 5.4 Final weight

In summary, the final weight is the product of the final school, class and student weights:

$$
\begin{equation*}
W^{i}=F W_{s c}^{i} \cdot F W_{c l}^{i} \cdot F W_{s t}^{i} \tag{15}
\end{equation*}
$$

## Chapter 6

## Item Analysis of the Final Test

### 6.1 Item analyses

This chapter presents the item analyses of the 2012 National Assessment Program - Science Literacy (NAP-SL) main assessment data.

### 6.1.1 Sample size

In all, 13236 students participated in at least one of the two components of the 2012 NAP-SL assessment: the paper-and-pencil test and the practical task. Table 6.1 shows the number of participating students by state and territory.

Table 6.1 Number of participating students by state and territory

| State / <br> Territory | Number of <br> students |
| :---: | :---: |
| ACT | 1242 |
| NSW | 2060 |
| NT | 710 |
| QLD | 2052 |
| SA | 1926 |
| TAS | 1259 |
| VIC | 1854 |
| WA | 2133 |
| Total | 13236 |

### 6.1.2 Number of students by booklet

Seven test booklets with link items were rotated in each class (see Section 6.2 for the test design). Each student completed only one test booklet. Table 6.2 shows the number of students that completed each test booklet. It can be seen that the test rotation scheme worked well, as the number of students per booklet is approximately equal across the seven booklets. As each objective item appears in three test booklets, the number of students who took each objective item is approximately 5650 . As each student completed one of two practical tasks, the number of students who took each practical task item is approximately 6500.

Table 6.2 Number of students
by test booklet

| Booklet | Number of <br> students |
| :---: | :---: |
| 1 | 1870 |
| 2 | 1875 |
| 3 | 1914 |
| 4 | 1909 |
| 5 | 1900 |
| 6 | 1871 |
| 7 | 1897 |
| Total | 13236 |

### 6.1.3 Initial item analysis

The first item analysis carried out was on all data records. No sampling weights were used. This analysis aimed to detect any items that did not function well. In this analysis, all trailing missing item responses were treated as not administered, except for the first item following the last non-missing item. Embedded missing responses were treated as incorrect. A complete list of items and their codes can be found in Table 6.3.

### 6.1.3.1 Item-person map

Figure 6.1 shows an item-person map from this analysis.

Figure 6.1 Item-person map


[^8]The vertical scale in Figure 6.1 shows increasing proficiency, with student ability distribution shown in the left panel (indicated by an ' X '). The items are placed in the right panel (indicated by item numbers) in item difficulty order, where items at the top are most difficult.

Figure 6.1 shows that the items cover a wide range of difficulty levels. The average item difficulty is zero logit, while the average ability is -0.289 logit, showing that the match between item difficulties and person abilities is quite good overall.

Items falling outside parameters of discrimination $0.25-0.5$ and fit $0.85-1.15$ were checked by test developers and the decision was made to include all of the items in the final data analysis. Item Characteristic Curves (ICCs) from RUMM can be found in the file NAPSL2012_CheckStateLocations.xlsx (refer to Section 6.3 for details on how to obtain access to this file).

### 6.1.3.2 Summary item statistics

Table 6.3 shows summary item statistics for each of the 112 items.
Table 6.3 Summary item statistics in 2012

| Item label | Item reference number | Number of students | Percentage correct | Discrimination index | Fit mean square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PAQ01 | 1 | 6570 | 2.59 | 0.17 | 1.04 |
| PAQ02 | 2 | 6570 | 27.58 | 0.34 | 1.00 |
| PAQ03 | 3 | 6570 | 66.44 | 0.38 | 0.98 |
| PAQ04 | 4 | 6570 | 53.27 | 0.36 | 1.01 |
| PAQ05 | 5 | 6570 | 11.37 | 0.29 | 0.97 |
| PAQ06 | 6 | 6570 | 23.04 | 0.40 | 0.94 |
| PAQ07 | 7 | 6570 | 26.37 | 0.43 | 0.99 |
| PAQ08 | 8 | 6570 | 15.81 | 0.35 | 0.95 |
| PAQ09 | 9 | 6570 | 24.93 | 0.15 | 1.13 |
| PAQ10 | 10 | 6570 | 64.81 | 0.41 | 0.95 |
| PAQ11 | 11 | 6570 | 62.97 | 0.46 | 0.92 |
| PBQo1 | 12 | 6498 | 83.90 | 0.19 | 1.06 |
| PBQ02 | 13 | 6498 | 6.82 | 0.16 | 1.03 |
| PBQo3 | 14 | 6498 | 59.39 | 0.33 | 1.02 |
| PBQ04 | 15 | 6498 | 71.27 | 0.43 | 0.91 |
| PBQ05 | 16 | 6498 | 44.40 | 0.20 | 1.14 |
| PBQo6 | 17 | 6498 | 5.37 | 0.16 | 1.01 |
| PBQ07 | 18 | 6498 | 83.81 | 0.36 | 0.93 |
| PBQ08 | 19 | 6498 | 82.69 | 0.37 | 0.93 |
| PBQ09 | 20 | 6498 | 50.03 | 0.48 | 0.91 |
| PBQ10 | 21 | 6498 | 3.51 | 0.16 | 1.01 |
| IDOB532 | 22 | 5662 | 23.77 | 0.29 | 1.01 |
| IDOB533 | 23 | 5662 | 19.09 | 0.17 | 1.07 |
| IDOB534 | 24 | 5662 | 15.82 | 0.30 | 0.98 |
| IDOB483 | 25 | 5662 | 32.39 | 0.45 | 0.91 |

Table 6.3 (Cont.) Summary item statistics in 2012

| Item label | Item reference number | Number of students | Percentage correct | Discrimination index | Fit mean square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IDOB484 | 26 | 5662 | 37.85 | 0.42 | 0.95 |
| IDOB486 | 27 | 5662 | 62.13 | 0.37 | 0.99 |
| IDOB487 | 28 | 5662 | 3.66 | 0.18 | 1.00 |
| IDOB489 | 29 | 5662 | 50.90 | 0.48 | 0.91 |
| IDOB490 | 30 | 5662 | 48.27 | 0.50 | 0.89 |
| IDOB491 | 31 | 5662 | 53.18 | 0.43 | 0.95 |
| IDOB470 | 32 | 5662 | 15.26 | 0.19 | 1.04 |
| IDOB471 | 33 | 5662 | 38.48 | 0.31 | 1.04 |
| IDOB473 | 34 | 5662 | 28.49 | 0.34 | 1.00 |
| IDOB097 | 35 | 5647 | 78.20 | 0.36 | 0.96 |
| IDOBo98 | 36 | 5647 | 55.22 | 0.35 | 1.01 |
| IDOB149 | 37 | 5647 | 67.88 | 0.38 | 0.96 |
| IDOB150 | 38 | 5647 | 69.36 | 0.40 | 0.93 |
| IDOB021 | 39 | 5647 | 29.64 | 0.34 | 0.99 |
| IDOBo22 | 40 | 5647 | 62.16 | 0.37 | 0.98 |
| IDOB023 | 41 | 5647 | 30.95 | 0.22 | 1.09 |
| IDOB177 | 42 | 5647 | 33.86 | 0.38 | 1.11 |
| IDOB178 | 43 | 5647 | 29.64 | 0.36 | 0.98 |
| IDOBo84 | 44 | 5647 | 60.70 | 0.25 | 1.10 |
| IDOBo85 | 45 | 5647 | 59.98 | 0.36 | 1.00 |
| IDOBo86 | 46 | 5647 | 17.87 | 0.21 | 1.07 |
| IDOBo87 | 47 | 5647 | 51.83 | 0.39 | 0.98 |
| IDOBo88 | 48 | 5647 | 59.48 | 0.40 | 0.95 |
| IDOB457 | 49 | 5668 | 45.85 | 0.44 | 0.93 |
| IDOB458 | 50 | 5668 | 28.93 | 0.21 | 1.10 |
| IDOB459 | 51 | 5668 | 42.82 | 0.26 | 1.09 |
| IDOB460 | 52 | 5668 | 43.60 | 0.30 | 1.06 |
| IDOB492 | 53 | 5668 | 81.05 | 0.34 | 0.96 |
| IDOB493 | 54 | 5668 | 44.53 | 0.24 | 1.10 |
| IDOB494 | 55 | 5668 | 33.86 | 0.36 | 0.99 |
| IDOB496 | 56 | 5668 | 58.91 | 0.35 | 1.02 |
| IDOB564 | 57 | 5668 | 42.81 | 0.35 | 1.12 |
| IDOB565 | 58 | 5668 | 75.48 | 0.39 | 0.94 |
| IDOB566 | 59 | 5668 | 22.35 | 0.34 | 0.98 |
| IDOB568 | 60 | 5668 | 21.26 | 0.32 | 0.99 |
| IDOB569 | 61 | 5668 | 47.48 | 0.41 | 0.96 |
| IDOB570 | 62 | 5668 | 14.71 | 0.28 | 1.00 |
| IDOB559 | 63 | 5660 | 72.84 | 0.41 | 0.94 |
| IDOB561 | 64 | 5660 | 49.36 | 0.49 | 0.89 |
| IDOB562 | 65 | 5660 | 27.00 | 0.39 | 0.95 |
| IDOB563 | 66 | 5660 | 34.54 | 0.36 | 1.00 |
| IDOB451 | 67 | 5660 | 75.21 | 0.39 | 0.95 |
| IDOB452 | 68 | 5660 | 75.39 | 0.16 | 1.13 |
| IDOB453 | 69 | 5660 | 40.97 | 0.26 | 1.09 |

Table 6.3 (Cont.) Summary item statistics in 2012

| Item label | Item reference number | Number of students | Percentage correct | Discrimination index | Fit mean square |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IDOB454 | 70 | 5660 | 33.59 | 0.38 | 0.98 |
| IDOB551 | 71 | 5660 | 10.48 | 0.25 | 1.00 |
| IDOB552 | 72 | 5660 | 62.93 | 0.34 | 1.02 |
| IDOB553 | 73 | 5660 | 76.27 | 0.38 | 0.94 |
| IDOB554 | 74 | 5660 | 14.95 | 0.17 | 1.08 |
| IDOB503 | 75 | 5660 | 75.44 | 0.35 | 0.97 |
| IDOB506 | 76 | 5660 | 8.60 | 0.27 | 0.97 |
| IDOB041 | 77 | 5599 | 78.75 | 0.24 | 1.05 |
| IDOB044 | 78 | 5599 | 62.76 | 0.31 | 1.04 |
| IDOB173 | 79 | 5599 | 68.24 | 0.22 | 1.10 |
| IDOB474 | 80 | 5599 | 86.57 | 0.20 | 1.03 |
| IDOB475 | 81 | 5599 | 61.48 | 0.39 | 0.96 |
| IDOB184 | 82 | 5599 | 37.59 | 0.38 | 1.08 |
| IDOB185 | 83 | 5599 | 64.74 | 0.20 | 1.13 |
| IDOB186 | 84 | 5599 | 47.31 | 0.25 | 1.10 |
| IDOB368 | 85 | 5599 | 25.56 | 0.30 | 1.00 |
| IDOB370 | 86 | 5599 | 87.27 | 0.28 | 0.96 |
| IDOB371 | 87 | 5599 | 39.83 | 0.40 | 0.96 |
| IDOB461 | 88 | 5672 | 81.22 | 0.31 | 0.99 |
| IDOB462 | 89 | 5672 | 43.69 | 0.39 | 0.96 |
| IDOB517 | 90 | 5672 | 41.59 | 0.43 | 0.93 |
| IDOB518 | 91 | 5672 | 84.03 | 0.35 | 0.93 |
| IDOB519 | 92 | 5672 | 57.81 | 0.34 | 1.01 |
| IDOB521 | 93 | 5672 | 52.50 | 0.27 | 1.08 |
| IDOB522 | 94 | 5672 | 40.71 | 0.38 | 0.97 |
| IDOB529 | 95 | 5672 | 38.29 | 0.52 | 0.86 |
| IDOB530 | 96 | 5672 | 14.32 | 0.34 | 0.95 |
| IDOB531 | 97 | 5672 | 8.87 | 0.25 | 0.98 |
| IDOB444 | 98 | 5672 | 25.93 | 0.12 | 1.14 |
| IDOB446 | 99 | 5672 | 9.06 | 0.39 | 0.93 |
| IDOB417 | 100 | 5677 | 34.56 | 0.46 | 0.91 |
| IDOB418 | 101 | 5677 | 53.43 | 0.33 | 1.02 |
| IDOB419 | 102 | 5677 | 55.06 | 0.24 | 1.09 |
| IDOB360 | 103 | 5677 | 79.95 | 0.34 | 0.96 |
| IDOB363 | 104 | 5677 | 37.66 | 0.39 | 0.96 |
| IDOB362 | 105 | 5677 | 51.66 | 0.32 | 1.03 |
| IDOB308 | 106 | 5677 | 76.18 | 0.39 | 0.91 |
| IDOB309 | 107 | 5677 | 61.71 | 0.38 | 0.95 |
| IDOB310 | 108 | 5677 | 57.30 | 0.30 | 1.04 |
| IDOB313 | 109 | 5677 | 32.31 | 0.29 | 1.05 |
| IDOB315 | 110 | 5677 | 55.87 | 0.30 | 1.04 |
| IDOB405 | 111 | 5677 | 22.95 | 0.29 | 1.00 |
| IDOB406 | 112 | 5677 | 14.34 | 0.24 | 1.01 |

### 6.1.3.3 Test reliability

The person separation index (the proportion of variance of the estimated person measures and the total variance including error) for the 2012 NAP-SL tests was 0.88 , which is very high ${ }^{1}$.

### 6.1.4 Booklet effect

'Booklet effect' refers to the differences in booklet difficulties after equating of the booklets has been carried out. That is, students may be advantaged or disadvantaged by taking a particular test booklet, even after booklets have been equated. Table 6.4 shows the booklet difficulty estimates. The estimation of booklet adjustments was carried out through a ConQuest analysis with the model statement:
booklet + item + item*step

Table 6.4 Booklet difficulty parameters

| Booklet <br> number | Booklet <br> parameter (logit) | Error |
| :---: | :---: | :---: |
| 1 | -0.028 | 0.005 |
| 2 | -0.051 | 0.006 |
| 3 | -0.003 | 0.005 |
| 4 | -0.029 | 0.006 |
| 5 | 0.055 | 0.006 |
| 6 | 0.010 | 0.006 |
| 7 | 0.044 | 0.014 |

The booklet parameters shown in Table 6.4 are very close to zero, indicating that booklet effect was not a serious issue for this assessment. It is noted that booklet 2 seems to be somewhat easier and booklet 5 appears to be more difficult than the other booklets. However, in estimating the student Proficiency Levels, the booklet effect was taken into account. In doing so, the booklet effect was set as one of the model parameters in estimating the student parameters in ConQuest.

### 6.1.5 Item statistics by state and territory

While the items worked quite well in general for the overall sample, it is important to check if the items performed well within each state and territory, and whether the item difficulties are similar across states and territories. For a few items, the discrimination index falls below 0.2 for some states and territories. In particular, item IDOB444 is the least discriminating item. The discrimination index of this item for VIC and NT is 0.04 and 0.07 respectively. Detailed item statistics for this item are shown in Figure 6.2. It can be seen from Figure 6.2 that option 4 of this item strongly attracted students in VIC and NT. The item required students to identify the experimental setup that will help answer a scientific question, i.e. 'which box material affects the temperature of the air inside the box'.

[^9]Approximately 48 per cent of students in VIC and 45 per cent of students in NT chose the incorrect option 4 ; 'Box 5 and Box 7 '. This misunderstanding may be due to students taking into consideration the type of outside surface rather than the box material.

Figure 6.2 Item analysis for item IDOB444 for VIC and NT

VIC: item: (IDOB444)

| Cases for this item | 800 | Discrimination | 0.04 |
| :--- | :--- | :--- | :--- |
| Item Threshold(s): | 0.89 |  |  |
| Item Delta(s): | 0.89 |  |  |

$\qquad$

Label Score Count \% of tot Pt Bis t (p) PV1Avg:1 PV1 SD:1

| 1 | 0.00 | 71 | 8.88 | -0.11 | $-3.00(.003)$ | -0.64 | 0.92 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.00 | 111 | 13.88 | -0.12 | $-3.50(.000)$ | -0.57 | 1.00 |
| 3 | 1.00 | 216 | 27.00 | 0.04 | $1.05(.293)$ | -0.13 | 0.92 |
| 4 | 0.00 | 387 | 48.38 | 0.14 | $3.90(.000)$ | -0.22 | 0.80 |
| 7 | 0.00 | 2 | 0.25 | 0.04 | $1.00(.318)$ | 0.25 | 0.95 |
| 9 | 0.00 | 12 | 1.50 | -0.12 | $-3.48(.001)$ | -1.27 | 0.98 |
| A | 0.00 | 1 | 0.13 | 0.02 | $0.62(.536)$ | 0.05 | 0.00 |

NT: item: (IDOB444)

Cases for this item 283 Discrimination 0.07

Item Threshold(s): 1.18

Item Delta(s): 1.18

Label Score Count \% of tot Pt Bis t (p) PV1Avg:1 PV1 SD:1

| 1 | 0.00 | 33 | 11.66 | -0.21 | $-3.63(.000)$ | -0.72 | 1.10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.00 | 49 | 17.31 | -0.13 | $-2.25(.025)$ | -0.47 | 0.96 |
| 3 | 1.00 | 67 | 23.67 | 0.07 | $1.19(.234)$ | -0.06 | 0.93 |
| 4 | 0.00 | 128 | 45.23 | 0.21 | $3.62(.000)$ | -0.06 | 0.91 |
| 7 | 0.00 | 1 | 0.35 | -0.08 | $-1.43(.154)$ | -0.82 | 0.00 |
| 9 | 0.00 | 5 | 1.77 | -0.09 | $-1.55(.122)$ | -0.88 | 0.98 |
| $=================================================================$ |  |  |  |  |  |  |  |

### 6.1.6 Comparison of item difficulty parameters across states and territories

Figure 6.3 shows a comparison of item difficulties calibrated for each state and territory separately, using ConQuest. For each state and territory, the average item difficulty was set to zero, so that each item difficulty shows the deviation from the average item difficulty within that state and territory. In this way, the item difficulties across different states and territories can be compared, as the overall ability level of students for each state and territory is controlled for. If an item has very different difficulty values across states and territories, then there is evidence of differential item functioning. Figure 6.3 shows that the calibrated item difficulties are very similar across states and territories. That is, there is little evidence of differential item functioning. Similarly, there is no significant difference in the item discrimination indices across states and territories, as shown in Figure 6.4.

Further analyses using RUMM software show that for most items the locations are similar across states and territories. However, when comparing the state and territory location to the whole sample location, a few items fall outside of the confidence interval. For further details please refer to the spreadsheet NAPSL2012_CheckStateLocations.xlsx (refer to Section 6.3 for details on how to obtain access to this file).

Figure 6.3 (Cont.) Comparison of item difficulty parameters across states and territories

Figure 6.3 (Cont.) Comparison of item difficulty parameters across states and territories

Figure 6.4 Discrimination index by state/territory

Figure 6.4 (Cont.) Discrimination index by state/territory

Figure 6.4 (Cont.) Discrimination index by state/territory


### 6.1.7 Item difficulty by gender

Table 6.5 shows item parameters calibrated separately for gender groups, arranged in order of the difference between the item difficulty parameters. The left side of the table shows items where boys performed better, and the right side of the table shows items where girls performed better. For most items, the difference in item difficulty parameters is small. If one takes 0.5 logits as a cut-off value for identifying a relatively large gender difference, then only six items fall in this category: boys performed better on item IDOB453, item IDOB451, item IDOB483 and IDOB568, and girls performed better on item IDOB563 and item PBQo6. These six items were retained in the analysis owing to the fact that the estimation model included gender as a regression term and was thus able to absorb the observed gender DIF for these six items. Item IDOB529 showed the smallest difference ( 0.004 logits) in item difficulty between boys and girls.

Table 6.5 Item difficulty parameters for gender groups

| Boys performed better |  |  |  |
| :--- | :---: | :---: | :---: |
| Code | Girls | Boys | Diff |
| IDOB453 | 0.460 | -0.260 | 0.720 |
| IDOB451 | -1.416 | -2.010 | 0.594 |
| IDOB483 | 0.831 | 0.311 | 0.520 |
| IDOB568 | 1.476 | 0.962 | 0.514 |
| IDOB452 | -1.500 | -1.954 | 0.454 |
| IDOB446 | 2.961 | 2.521 | 0.440 |
| IDOB489 | -0.166 | -0.604 | 0.438 |
| PBQ05 | 0.210 | -0.200 | 0.410 |
| IDOB085 | -0.710 | -1.096 | 0.386 |
| IDOB084 | -0.742 | -1.110 | 0.368 |
| IDOB149 | -1.059 | -1.401 | 0.342 |
| IDOB473 | 0.899 | 0.581 | 0.318 |
| IDOB457 | 0.037 | -0.241 | 0.278 |
| IDOB470 | 1.797 | 1.521 | 0.276 |
| IDOB173 | -1.071 | -1.347 | 0.276 |
| IDOB405 | 1.258 | 0.992 | 0.266 |
| IDOB462 | 0.144 | -0.114 | 0.258 |
| IDOB517 | 0.240 | 0.002 | 0.238 |
| IDOB044 | -0.796 | -1.032 | 0.236 |
| IDOB518 | -2.135 | -2.367 | 0.232 |
| PAQ05 | 2.190 | 1.964 | 0.226 |
| IDOB363 | 0.426 | 0.210 | 0.216 |
| IDOB021 | 0.793 | 0.591 | 0.202 |
| IDOB493 | 0.040 | -0.158 | 0.198 |
| IDOB503 | -1.772 | -1.964 | 0.192 |
| IDOB533 | 1.483 | 1.295 | 0.188 |
| IDOB521 | -0.324 | -0.502 | 0.178 |
| IDOB362 | -0.281 | -0.457 | 0.176 |
| IDOB460 | 0.080 | -0.084 | 0.164 |
|  |  |  |  |


| Girls performed better |  |  |  |
| :--- | :---: | :---: | :---: |
| Code | Girls | Boys | Diff |
| IDOB563 | 0.176 | 0.702 | -0.526 |
| PBQ06 | 2.710 | 3.222 | -0.512 |
| IDOB474 | -2.787 | -2.343 | -0.444 |
| IDOB370 | -3.095 | -2.653 | -0.442 |
| PAQ03 | -1.300 | -0.892 | -0.408 |
| PAQ09 | 0.832 | 1.210 | -0.378 |
| PBQ09 | -0.447 | -0.099 | -0.348 |
| IDOB566 | 0.966 | 1.304 | -0.338 |
| IDOB534 | 1.483 | 1.809 | -0.326 |
| PBQ01 | -2.354 | -2.030 | -0.324 |
| PAQ02 | 0.697 | 1.017 | -0.320 |
| PAQ06 | 0.973 | 1.293 | -0.320 |
| PAQ04 | -0.589 | -0.273 | -0.316 |
| IDOB561 | -0.450 | -0.142 | -0.308 |
| IDOB486 | -1.066 | -0.772 | -0.294 |
| IDOB461 | -2.163 | -1.875 | -0.288 |
| IDOB559 | -1.652 | -1.370 | -0.282 |
| IDOB313 | 0.457 | 0.717 | -0.260 |
| IDOB564 | -0.077 | 0.175 | -0.252 |
| IDOB371 | 0.035 | 0.281 | -0.246 |
| PAQ10 | -1.122 | -0.888 | -0.234 |
| IDOB570 | 1.570 | 1.804 | -0.234 |
| IDOB097 | -1.954 | -1.728 | -0.226 |
| IDOB086 | 1.303 | 1.525 | -0.222 |
| PAQ08 | 1.550 | 1.764 | -0.214 |
| IDOB308 | -1.780 | -1.580 | -0.200 |
| IDOB177 | 0.393 | 0.591 | -0.198 |
| PBQ08 | -2.164 | -1.988 | -0.176 |
| IDOB309 | -0.959 | -0.783 | -0.176 |
|  |  |  |  |
|  |  |  |  |

Table 6.5 (Cont.) Item difficulty parameters for gender groups

| Boys performed better |  |  |  |
| :---: | :---: | :---: | :---: |
| Code | Girls | Boys | Diff |
| IDOB023 | 0.680 | 0.542 | 0.138 |
| IDOB310 | -0.587 | -0.721 | 0.134 |
| IDOB454 | 0.532 | 0.402 | 0.130 |
| IDOB041 | -1.790 | -1.914 | 0.124 |
| IDOB490 | -0.204 | -0.324 | 0.120 |
| IDOB531 | 2.418 | 2.310 | 0.108 |
| PBQ04 | -1.272 | -1.378 | 0.106 |
| IDOB496 | -0.719 | -0.819 | 0.100 |
| IDOB554 | 1.716 | 1.622 | 0.094 |
| IDOB459 | 0.081 | -0.005 | 0.086 |
| IDOB491 | -0.476 | -0.558 | 0.082 |
| IDOB506 | 2.383 | 2.303 | 0.080 |
| IDOB551 | 2.171 | 2.095 | 0.076 |
| IDOB532 | 1.107 | 1.037 | 0.070 |
| IDOB569 | -0.239 | -0.297 | 0.058 |
| IDOBo98 | -0.540 | -0.596 | 0.056 |
| IDOB565 | -1.720 | -1.766 | 0.046 |
| IDOB492 | -2.047 | -2.091 | 0.044 |
| IDOB315 | -0.580 | -0.622 | 0.042 |
| IDOB418 | -0.427 | -0.465 | 0.038 |
| PBQ10 | 3.433 | 3.401 | 0.032 |
| IDOB530 | 1.785 | 1.755 | 0.030 |
| PBQ07 | -2.146 | -2.172 | 0.026 |
| IDOB444 | 0.935 | 0.911 | 0.024 |
| IDOB519 | -0.659 | -0.675 | 0.016 |
| PAQ01 | 3.214 | 3.208 | 0.006 |
| IDOB529 | 0.272 | 0.268 | 0.004 |


| Girls performed better |  |  |  |
| :--- | :---: | :---: | :---: |
| Code | Girls | Boys | Diff |
| PBQ03 | -0.802 | -0.634 | -0.168 |
| IDOB562 | 0.772 | 0.940 | -0.168 |
| PAQ07 | 1.090 | 1.256 | -0.166 |
| IDOB185 | -1.137 | -0.973 | -0.164 |
| IDOB475 | -0.938 | -0.782 | -0.156 |
| IDOB417 | 0.406 | 0.556 | -0.150 |
| PAQ11 | -0.983 | -0.845 | -0.138 |
| IDOB022 | -1.014 | -0.878 | -0.136 |
| IDOB186 | -0.243 | -0.133 | -0.110 |
| IDOB471 | 0.146 | 0.246 | -0.100 |
| IDOB484 | 0.229 | 0.325 | -0.096 |
| IDOB087 | -0.581 | -0.487 | -0.094 |
| IDOB368 | 0.904 | 0.994 | -0.090 |
| IDOB494 | 0.434 | 0.520 | -0.086 |
| IDOB178 | 0.633 | 0.717 | -0.084 |
| IDOB088 | -0.994 | -0.922 | -0.072 |
| IDOB458 | 0.730 | 0.792 | -0.062 |
| IDOB406 | 1.738 | 1.800 | -0.062 |
| IDOB522 | 0.124 | 0.178 | -0.054 |
| IDOB487 | 3.324 | 3.374 | -0.050 |
| IDOB552 | -1.064 | -1.020 | -0.044 |
| IDOB184 | 0.354 | 0.396 | -0.042 |
| IDOB150 | -1.318 | -1.304 | -0.014 |
| IDOB553 | -1.875 | -1.863 | -0.012 |
| PBQ02 | 2.677 | 2.687 | -0.010 |
| IDOB360 | -1.934 | -1.924 | -0.010 |
| IDOB419 | -0.527 | -0.521 | -0.006 |
|  |  |  |  |
|  |  |  |  |

### 6.1.8 Impact of item type on student performance

Percentages of students omitting responses by item type and gender are shown in Table 6.6. It can be seen that the omit rate for extended response items is higher than that of short answer items. Similarly, the omit rate for short answer items is higher than that of multiple-choice items. These trends are consistent across jurisdictions.

Table 6.6 Percentages of students omitting responses by item type

| State / Territory | Gender | Item type and per cent omits |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Multiple-choice (MC) | Short answer (SA) | Extended response (ER) |
| ACT | Females | 2.04 | 5.14 | 7.50 |
|  | Males | 2.35 | 6.51 | 8.80 |
| NSW | Females | 2.17 | 5.21 | 7.63 |
|  | Males | 2.49 | 5.64 | 9.27 |
| NT | Females | 6.37 | 11.30 | 15.82 |
|  | Males | 6.40 | 13.66 | 18.26 |
| QLD | Females | 3.68 | 5.99 | 7.90 |
|  | Males | 3.75 | 7.26 | 9.45 |
| SA | Females | 2.20 | 5.56 | 8.83 |
|  | Males | 2.39 | 5.82 | 10.09 |
| TAS | Females | 2.77 | 5.57 | 8.44 |
|  | Males | 3.20 | 7.54 | 11.25 |
| VIC | Females | 2.79 | 6.11 | 8.68 |
|  | Males | 2.96 | 7.05 | 10.35 |
| WA | Females | 2.51 | 5.57 | 8.10 |
|  | Males | 2.79 | 6.59 | 10.83 |
| AUST | Females | 2.83 | 5.93 | 8.61 |
|  | Males | 3.03 | 6.93 | 10.40 |

It is interesting to note that the omit rates for extended response items appear to be higher for male students than female students.

### 6.2 Test design

### 6.2.1 Sample test design

Each test booklet contained an objective test and two practical tasks. Students were only required to complete the objective test and one of the two practical tasks. The objective tests were made up of item sets grouped into clusters. Each cluster appeared in three of the seven test booklets - once at the beginning of the paper (Block 1), once in the middle (Block 2) and once at the end of the paper (Block 3). The following table shows how each item was arranged within the booklets.

Table 6.7 List of item codes and details

| Item Label | Paper | Block 1 | Block 2 | Block 3 | SRM question number | Unit title |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PAQ01 | Practical | AQ01 |  |  |  |  |
| PAQ02 | Practical | AQo2 |  |  |  |  |
| PAQ03 | Practical | AQo3 |  |  |  |  |
| PAQ04 | Practical | AQ04 |  |  |  |  |
| PAQ05 | Practical | AQ05 |  |  |  |  |
| PAQ06 | Practical | AQ06 |  |  |  |  |
| PAQ07 | Practical | AQ07 |  |  |  |  |
| PAQo8 | Practical | AQo8 |  |  |  |  |
| PAQ09 | Practical | AQ09 |  |  |  |  |
| PAQ10 | Practical | AQ10 |  |  |  |  |
| PAQ11 | Practical | AQ11 |  |  |  |  |
| PBQ01 | Practical | BQ01 |  |  | P1 | Reaction time |
| PBQ02 | Practical | BQo2 |  |  | P2 | Reaction time |
| PBQ03 | Practical | BQo3 |  |  | P3 | Reaction time |
| PBQ04 | Practical | BQ04 |  |  | $\mathrm{P}_{4}$ | Reaction time |
| PBQ05 | Practical | BQo5 |  |  | $\mathrm{P}_{5}$ | Reaction time |
| PBQ06 | Practical | BQo6 |  |  | P6 | Reaction time |
| PBQ07 | Practical | BQ07 |  |  | $\mathrm{P}_{7}$ | Reaction time |
| PBQ08 | Practical | BQo8 |  |  | P8 | Reaction time |
| PBQ09 | Practical | BQ09 |  |  | P9 | Reaction time |
| PBQ10 | Practical | BQ10 |  |  | P10 | Reaction time |
| IDOB532 | Objective | B4Q26 | B6Q15 | B7Q01 |  |  |
| IDOB533 | Objective | B4Q27 | B6Q16 | B7Q02 |  |  |
| IDOB534 | Objective | B4Q28 | B6Q17 | B7Q03 |  |  |
| IDOB483 | Objective | B4Q29 | B6Q18 | B7Q04 | 21 | Evaporating liquids |
| IDOB484 | Objective | B4Q30 | B6Q19 | B7Q05 | 22 | Evaporating liquids |
| IDOB486 | Objective | B4Q31 | B6Q20 | B7Q06 | 23 | Evaporating liquids |
| IDOB487 | Objective | B4Q32 | B6Q21 | B7Q07 | 24 | Evaporating liquids |
| IDOB489 | Objective | B4Q33 | B6Q22 | B7Qo8 | 25 | Evaporating liquids |
| IDOB490 | Objective | B4Q34 | B6Q23 | B7Q09 | 26 | Evaporating liquids |
| IDOB491 | Objective | B4Q35 | B6Q24 | B7Q10 | 27 | Evaporating liquids |
| DOB470 | Objective | B4Q36 | B6Q25 | B7Q11 |  |  |
| IDOB471 | Objective | B4Q37 | B6Q26 | B7Q12 |  |  |
| IDOB473 | Objective | B4Q38 | B6Q27 | B7Q13 |  |  |
| IDOB097 | Objective | B1Q01 | B5Q27 | B7Q14 |  |  |
| IDOB098 | Objective | B1Q02 | B5Q28 | B7Q15 |  |  |
| IDOB149 | Objective | B1Qo3 | B5Q29 | B7Q16 |  |  |
| IDOB150 | Objective | B1Q04 | B5Q30 | B7Q17 |  |  |
| IDOB021 | Objective | B1Q05 | B5Q31 | B7Q18 |  |  |
| IDOB022 | Objective | B1Q06 | B5Q32 | B7Q19 |  |  |
| IDOB023 | Objective | B1Q07 | B5Q33 | B7Q20 |  |  |
| IDOB177 | Objective | B1Q08 | B5Q34 | B7Q21 |  |  |
| IDOB178 | Objective | B1Q09 | B5Q35 | B7Q22 |  |  |
| IDOBo84 | Objective | B1Q10 | B5Q36 | B7Q23 |  |  |
| IDOBo85 | Objective | B1Q11 | B5Q37 | B7Q24 |  |  |
| IDOBo86 | Objective | B1Q12 | B5Q38 | B7Q25 |  |  |

Table 6.7 (Cont.) List of item codes and details

| Item Label | Paper | Block 1 | Block 2 | Block 3 | SRM question number | Unit title |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDOBo87 | Objective | B1Q13a | B5Q39a | B7Q26a |  |  |
| IDOBo88 | Objective | B1Q13b | B5Q39b | B7Q26b |  |  |
| IDOB457 | Objective | B2Q12 | B3Q01 | B7Q27 | 28 | Seed dispersal |
| IDOB458 | Objective | B2Q13 | B3Qo2 | B7Q28 | 29 | Seed dispersal |
| IDOB459 | Objective | B2Q14 | B3Qo3 | B7Q29 | 30 | Seed dispersal |
| IDOB460 | Objective | B2Q15 | B3Qo4 | B7Q30 | 31 | Seed dispersal |
| IDOB492 | Objective | B2Q16 | B3Q05 | B7Q31 | 9 | Food and energy |
| IDOB493 | Objective | B2Q17 | B3Qo6 | B7Q32 | 10 | Food and energy |
| IDOB494 | Objective | B2Q18 | B3Q07 | B7Q33 | 11 | Food and energy |
| IDOB496 | Objective | B2Q19 | B3Qo8 | B7Q34 | 12 | Food and energy |
| IDOB564 | Objective | B2Q20 | B3Q09 | B7Q35 |  |  |
| IDOB565 | Objective | B2Q21 | B3Q10 | B7Q36 |  |  |
| IDOB566 | Objective | B2Q22 | B3Q11 | B7Q37 |  |  |
| IDOB568 | Objective | B2Q23 | B3Q12 | B7Q38 |  |  |
| IDOB569 | Objective | B2Q24 | B3Q13 | B7Q39 |  |  |
| IDOB570 | Objective | B2Q25 | B3Q14 | B7Q40 |  |  |
| IDOB559 | Objective | B3Q28 | B5Q13 | B6Q01 |  |  |
| IDOB561 | Objective | B3Q29 | B5Q14 | B6Qo2 |  |  |
| IDOB562 | Objective | B3Q30 | B5Q15 | B6Q03 |  |  |
| IDOB563 | Objective | B3Q31 | B5Q16 | B6Q04 |  |  |
| IDOB451 | Objective | B3Q32 | B5Q17 | B6Q05 | 3 | Light and shadows |
| IDOB452 | Objective | B3Q33 | B5Q18 | B6Qo6 | 4 | Light and shadows |
| IDOB453 | Objective | B3Q34 | B5Q19 | B6Q07 | 5 | Light and shadows |
| IDOB454 | Objective | B3Q35 | B5Q20 | B6Qo8 | 6 | Light and shadows |
| IDOB551 | Objective | B3Q36 | B5Q21 | B6Q09 |  |  |
| IDOB552 | Objective | B3Q37 | B5Q22 | B6Q10 |  |  |
| IDOB553 | Objective | B3Q38 | B5Q23 | B6Q11 |  |  |
| IDOB554 | Objective | B3Q39 | B5Q24 | B6Q12 |  |  |
| IDOB503 | Objective | B3Q40 | B5Q25 | B6Q13 |  |  |
| IDOB506 | Objective | B3Q41 | B5Q26 | B6Q14 |  |  |
| IDOB041 | Objective | B1Q14 | B2Q01 | B6Q28 |  |  |
| IDOB044 | Objective | B1Q15 | B2Q02 | B6Q29 |  |  |
| IDOB173 | Objective | B1Q16 | B2Q03 | B6Q30 |  |  |
| IDOB474 | Objective | B1Q17 | B2Q04 | B6Q31 | 1 | Life in the desert |
| IDOB475 | Objective | B1Q18 | B2Q05 | B6Q32 | 2 | Life in the desert |
| IDOB184 | Objective | B1Q19 | B2Q06 | B6Q33 | 15 | Curtains |
| IDOB185 | Objective | B1Q20 | B2Q07 | B6Q34 | 16 | Curtains |
| IDOB186 | Objective | B1Q21 | B2Qo8 | B6Q35 | 17 | Curtains |
| IDOB368 | Objective | B1Q22 | B2Q09 | B6Q36 | 32 | Recycling |
| IDOB370 | Objective | B1Q23 | B2Q10 | B6Q37 | 33 | Recycling |
| IDOB371 | Objective | B1Q24 | B2Q11 | B6Q38 | 34 | Recycling |
| IDOB461 | Objective | B2Q26 | B4Q14 | B5Q01 | 7 | Mixing liquids |
| IDOB462 | Objective | B2Q27 | B4Q15 | B5Q02 | 8 | Mixing liquids |
| IDOB517 | Objective | B2Q28 | B4Q16 | B5Qo3 |  |  |
| IDOB518 | Objective | B2Q29 | B4Q17 | B5Q04 |  |  |

Table 6.7 (Cont.) List of item codes and details

| Item <br> Label | Paper | Block 1 | Block 2 | Block 3 | SRM <br> question <br> number | Unit title |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IDOB519 | Objective | B2Q30 | B4Q18 | B5Q05 |  |  |
| IDOB521 | Objective | B2Q31 | B4Q19 | B5Q06 |  |  |
| IDOB522 | Objective | B2Q32 | B4Q20 | B5Q07 |  |  |
| IDOB529 | Objective | B2Q33 | B4Q21 | B5Qo8 | 35 | Changing rocks |
| IDOB530 | Objective | B2Q34 | B4Q22 | B5Q09 | 36 | Changing rocks |
| IDOB531 | Objective | B2Q35 | B4Q23 | B5Q10 | 37 | Changing rocks |
| IDOB444 | Objective | B2Q36 | B4Q24 | B5Q11 | 38 | Solar energy |
| IDOB446 | Objective | B2Q37 | B4Q25 | B5Q12 | 39 | Solar energy |
| IDOB417 | Objective | B1Q25 | B3Q15 | B4Q01 | 18 | Making jelly |
| IDOB418 | Objective | B1Q26 | B3Q16 | B4Q02 | 19 | Making jelly |
| IDOB419 | Objective | B1Q27 | B3Q17 | B4Q03 | 20 | Making jelly |
| IDOB360 | Objective | B1Q28 | B3Q18 | B4Q04 |  |  |
| IDOB363 | Objective | B1Q29 | B3Q19 | B4Q05 |  |  |
| IDOB362 | Objective | B1Q30 | B3Q20 | B4Q06 |  |  |
| IDOB308 | Objective | B1Q31 | B3Q21 | B4Q07 |  |  |
| IDOB309 | Objective | B1Q32 | B3Q22 | B4Qo8 |  |  |
| IDOB310 | Objective | B1Q33 | B3Q23 | B4Q09 |  | Testing paper towels |
| IDOB313 | Objective | B1Q34 | B3Q24 | B4Q10 | 13 | Testing paper towels |
| ID0B315 | Objective | B1Q35 | B3Q25 | B4Q11 | 14 |  |
| IDOB405 | Objective | B1Q36 | B3Q26 | B4Q12 |  |  |
| ID0B406 | Objective | B1Q37 | B3Q27 | B4Q13 |  |  |

Note: Unit titles are shown for items which appear in the 2012 School Release Materials (SRM) only. To maintain security of future link items, all other unit titles have not been listed.

### 6.3 Item analysis files

Access to the data files and output from the analyses can be made available to researchers or future contractors who want to replicate procedures on application for approval to ACARA at datarequest@acara.edu.au. Relevant data files are listed throughout this Report.

## Chapter 7 Scaling of Test Data

### 7.1 Overview

The process of scaling refers to the estimation of student achievement distributions using information from students' responses to the test items. In the National Assessment Program - Science Literacy (NAP-SL), the scaling process involved two separate phases. Firstly, the item parameters were calibrated using a sample of the data. These item parameters were used as the basis for equating the 2012 results to the 2006 scale. Secondly, student Proficiency Levels were then calculated based on the full dataset.

### 7.1.1 Calibration of item parameters

The calibration of item parameters used a calibration sample which included equal numbers of respondents from each jurisdiction. Section 7.2 includes information on the selection of the calibration sample and the methodology for the calibration of item parameters.

## 7•1.2 Estimating student Proficiency Levels and producing plausible values

Once item parameters had been determined, student Proficiency Levels were estimated. As the main purpose of the study is to obtain profiles of student achievement at the population level, rather than at the individual student level, a methodology using plausible values ( Wu , 2005) was adopted. The following sections describe in detail the two phases of the scaling process.

### 7.2 Calibration sample

### 7.2.1 Overview

To estimate item difficulty parameters, a subset of the responses, called the calibration sample, was used to ensure that each jurisdiction had an equal representation in the sample so that the larger states did not unduly influence the item parameter values. Since NT had the smallest number of responses, all 738 responses were included in the calibration sample. For each of the other jurisdictions, a random sample of 738 responses was selected. Consequently, the calibration sample consisted of $5904(=738 \times 8)$ responses.

### 7.2.2 Data files availability

Access to the data files and output from the analyses is available under specific circumstances on application to ACARA at datarequest@acara.edu.au.

### 7.2.2.1 CalibrationSample.sav

The file CalibrationSample.sav contains student background variables as well as item responses.

The variables with prefix 'IDOB' (e.g. IDOB177) are students' raw item responses, recoded with $\mathrm{A}, \mathrm{B}, 9$ and M . The following rules apply to the recoding:

- For the pencil-and-paper test, the first 'not reached' item is coded as 'A' with the remaining 'not reached' items as ' B ', and embedded missing responses remain as ' 9 '. Students with no responses at all for the whole test have responses recoded to ' M '.
- For the practical task, students with no responses at all have responses recoded to ' $M$ '. Missing responses, whether not-reached or embedded, are recoded to ' 9 '. That is, there are no ' A ' and ' B ' codes. As the two practical tests have only 11 and 10 items respectively, there does not appear to be a large number of clearly 'not reached' items at the end.
- To calibrate the item parameters, response codes 'A' and ' 9 ' are treated as incorrect, whereas response codes ' B ' and ' M ' are treated as non-administered (i.e. as missing data).
- In contrast, to calibrate the student abilities in subsequent analyses, response code ' $M$ ' is treated as not-administered, but response codes ' $A$ ', ' 9 ' and ' $B$ ' are treated as incorrect.


### 7.2.2.2 CalibrationItems.dat

This ASCII (or text) file is used as input to IRT software to calibrate the item parameters. The codebook for the relevant data fields in the text file is given below:

Table 7.1 Codebook for CalibrationItems.dat

| Field | Column range | Description |
| :--- | :--- | :--- |
| Booklet ID | 8 | Unique identifier for the student record |
| Item responses | 10 to $121(112$ items in total $)$ | Student responses |

### 7.2.3 IRT analysis for calibrating item parameters

The software program used to carry out the calibration of item parameters is ConQuest. A facets model is used where the test booklet number is regarded as a facet. More specifically, the model statement used in ConQuest is:
bookid + item + item*step

The full syntax of ConQuest commands is in the control file CalibrationSample.cqc

The use of the term 'bookid' in ConQuest model statements is to ensure that the estimation of the item parameters takes into account the so-called 'booklet effect' (OECD 2012, p. 141). However, as there is only one domain in the 2012 NAP-SL (unlike PISA where there are three domains: mathematics, science and reading) and all items are calibrated together, it is not expected that there will be a significant booklet effect, as is shown later in the results of the item analysis.

Three output files are produced from ConQuest:

## CalibrationSample.shw

This is a summary file, showing booklet and item parameter values, population parameter estimated and item-person maps.

## CalibrationSample.itn

This file is known as the 'itanal', showing classical test statistics as well as IRT statistics for each item.

## CalibrationAnchor.anc

This file is produced through an Export statement in ConQuest. It contains the values of the parameters that can be used as anchor values later when student abilities are estimated.

Once the calibrated item parameters are obtained, the transformation equations used to equate the 2012 results to the 2006 scale are then derived. Details of the equating process can be found in Chapter 8 of this report.

### 7.3 Estimating student Proficiency Levels and producing plausible values

In this phase, student Proficiency Levels are estimated for the full data set (NAPSL2O12_PV_2013-03-11.sav See Appendix 7 for descriptions of variables).

The scaling model used is a one-parameter item response model with conditioning variables in the population latent regression model. See the PISA 2009 Technical Report for a description of the measurement model (OECD 2012).

The conditioning variables included are:

- School mean proficiency (average of students' weighted likelihood estimates for each school)
- State or territory
- Sector
- Gender
- Indigenous status
- Geographic location
- Language background.

To prepare the data to be used as conditioning variables, two separate steps are taken:

Step A: Produce a weighted likelihood estimate (WLE) for each student in the full data set, and compute the average WLE for each school. RUMM2020 and ConQuest were used for the estimation of WLE estimates, with item parameters anchored at values from the item calibration phase.

Step B: Dummy variables are created for State or territory, Sector, Gender, Indigenous status, Geographic location and Language background.

### 7.3.1 Production of plausible values

The software program ConQuest is used for the scaling of student Proficiency Levels and the generation of plausible values. Note that Case Weight is used in this analysis. Both booklet parameters and item parameters are anchored. Both embedded-missing (code ' 9 ') and not-reached items (codes ' $A$ ' and ' $B$ ') are treated as incorrect. If a test has no valid responses from a student, the responses (code ' $M$ ') are treated as not-administered. Ten plausible values are generated (instead of the usual five).

The ConQuest control file used is NAPSL2O12_Produce_2012_PV.cqc which is shown in Appendix 8.

### 7.4 Estimation of statistics of interest and their standard errors

Once the plausible values are produced for each student, statistics of interest can be computed together with their standard errors. For example, the mean achievement level in science literacy for Year 6 students in Australia can be estimated, as well as jurisdiction average achievement levels. The estimates will also have associated standard errors to indicate the confidence which we have about the results.

The plausible-values methodology has been used for large-scale studies such as TIMSS, PISA and NAEP. In the 2012 NAP-SL, this methodology was also used for the estimation of statistics and standard errors. For a detailed description of the methodology, see Mislevy, Beaton, Kaplan and Sheehan (1992), and Beaton and Gonzalez (1995).

Briefly, the methodology is summarised below. The plausible values for each student show the indicative level of the student's achievement. So the estimate for a population statistic is computed using the plausible values as if they represent each student's level of achievement. For example, to compute the estimated mean of the population, take the first plausible value for each student and compute the average across students, weighted by the sampling weight (student final weight). Repeat the process with all ten plausible values, and then average the ten estimated means for the ten runs. Similarly, for the estimation of percentiles and percentages in levels, plausible values are used in the same way.

The standard errors associated with the estimated statistics are not straightforward to compute, as the sampling method is not simple random sampling but a complex two-stage sampling. Typically, for complex sampling such as the one used for the 2012 NAP-SL, replication methods such as Balanced Repeated Replicate (BRR) or Jackknife are used to compute standard errors (Rust \& Rao 1996). In the 2012 NAP-SL, the Jackknife method was used. Jackknife replication weights are computed (variables RW1 to RW318 in the file NAPSL2012_PV_2013-03-11.sav).

The statistic of interest is computed using each of the replicate weights in turn. The variations in the estimated statistic obtained from using different replicate weights contribute to the estimate of the sampling variance for the estimated statistic. Combining this sampling variance with the variance from using the ten plausible values (the measurement error) provides an estimate of the standard error for the estimated statistic. SPSS macros were written to carry out the procedures of the estimation of statistics and their standard errors.

### 7.5 Transform logits to a scale with mean 400 and standard deviation 100

To facilitate the interpretation of the results, it is a common practice to transform logit scores. It was decided that, for the NAP-SL assessments, the proficiency scale should have a national mean of 400 and a standard deviation of 100 . This scale was chosen to avoid having negative values on the scale representing student proficiency. Further, a standard deviation of 100 provides easy interpretation of Proficiency Levels in terms of how far a score is from the mean.

As part of the equating process (refer to Chapter 8 for details), the 2012 logit scores are first translated to the 2006 scale, then transformed to the 400/100 scale. The transformation used in 2012 is given below.

## Score on proficiency scale $=($ Logit-o.200543797 $) / 0.954513216 * 100+400$

where 'Logit' refers to a logit score on the 2006 scale. The conversion of 2012 logit scores to the 2006 scale is detailed in section 8.3.

Note that the mean of 400 is the national mean, computed using student sampling weights to reflect the average achievement of all Year 6 students in Australia. It is not the average of jurisdiction means, as that average does not take into account the number of students in each jurisdiction. In summary, house weights are used to set the average score of 400, not senate weights.

## Chapter 8 <br> Equating 2012 Results to 2006 Results

### 8.1 Setting 2006 results as the baseline

While the first cycle of the National Assessment Program - Science Literacy (NAP-SL) was conducted in 2003 (then known as PSAP) and the 2006 assessment was the second round of NAP-SL, it was decided that the 2006 assessment be used to set the scale of a mean of 400 and a standard deviation of 100 instead of the 2003 assessment. The reasons for this decision are summarised below.
(1) The 2006 assessment test design was more robust than the 2003 test design. In 2006, a balanced incomplete block (BIB) test design consisting of seven test booklets was used. In contrast, in 2003 only two test booklets were used, resulting in item-position effect for most items.
(2) There were considerably more items in 2006 than in 2003, resulting in a better coverage of the science literacy content in 2006. In 2006, 110 items were included in the final test, while only 72 items were included in the 2003 test.
(3) The 2006 assessment produced a much higher population variance in achievement than 2003 did. In logits, the 2006 population standard deviation was 0.95 , while the 2003 population standard deviation was 0.78 . This could be an indication that:

- the 2006 items were generally more discriminating than the 2003 items; that is, the 2006 items were higher quality items
- the 2006 sampling was more comprehensive, as remote schools were also included in the sample, while the 2003 sampling focused only on areas where students were generally well-resourced.


### 8.2 Equating 2012 results to 2006 results

As a consequence of the decision to use the 2006 results as the baseline, the 2012 results were equated to 2006 results. To carry out the equating, link items between the 2012 and 2006 assessments were used.

This included six link items from the 2003 assessment and 14 link items from the 2006 assessment. Care was taken to find items that performed well psychometrically and also covered the range of scientific literacy strands A, B and C.

### 8.2.1 Link item selection

The selection process for the final set of link items to conduct equating between the 2012 and 2006 assessments consisted of two parts. In the first part, the list of items was refined based on the comparisons of item locations in 2012 and 2006. In the second part, the final set of items was inspected by a content expert from the test construction team in order to ensure that the selected link items provided adequate coverage across the scientific literacy strands.

In the first part of the link item selection process, the 2012 location of link items was independently estimated. In order to conduct comparisons of item locations between 2006 and 2012, the 2012 locations were adjusted to have the same mean and standard deviation as observed in 2006. In the first refinement step one clear outlier in terms of overall item difficulty was removed from the set. In the second step, all items with an absolute difference between the 2006 location and the 2012 location greater than 0.3 logits were removed. After readjusting the 2012 location, the second step was repeated with logits of 0.3 cut-off changed to 0.2 logits. After this step the final item pool was identified. The final set had 14 link items consisting of three 2003 link items and 112006 link items. A plot of 2006 and 2012 item difficulties for the final link items, including graphical representation of 95 per cent confidence interval for the statistical difference between item locations, is given in Figure 8.1.

Figure 8.1 Calibrated item difficulties in 2006 and 2012 for the final link item set


### 8.2.2 Equating procedures

The 2012 data were scaled and item parameters were obtained. Using the 2006 item parameters as anchors for common items, the 2012 data were scaled and population parameters (mean and variance of the ability distributions for 2012) were produced. The mean and variance from this scaling and the mean and variance from the 2012 scaling (i.e. scaling 2012 data using 2012 item parameters) were then compared. A transformation was derived from mapping the mean and variance of the 2012 ability distribution obtained using 2012 item parameters onto the mean and variance of the 2012 ability distribution obtained using 2006 item parameters. This transformation was used to place the 2012 results directly onto the 2006 scale.

### 8.3 Equating transformation

The result of the equating process was the derivation of a transformation formula for the 2012 results to be placed on the 2006 scale. This equation is given below.

## 2012 on 2006 scale $=((2012 l o g i t-(-0.3278)) / 0.9524)^{*} 0.9443+0.1620$

The scale factor is very close to 1 , indicating that an adjustment of the scale factor is not really necessary.

For standard errors, the transformation involved only the scale factor, as follows:
2012 standard error on 2006 scale in logit = ((2012 S.E. in logit) / 0.9524 ) * 0.9443

### 8.4 Link error

In establishing trends from 2006 to 2012, it is necessary to make judgments about the statistical significance of the difference in science literacy achievement between 2012 and 2006. An appropriate estimation of the magnitude of equating errors is important when trends are reported. An underestimate of the equating errors will often result in erroneous claims of change in achievement levels when there is no significant difference.

Equating errors come from at least two sources: the sampling of students and the sampling of items. Equating errors due to the sampling of students affect the accuracy with which the item parameters are estimated, and the magnitude of these errors diminishes when the sample size increases. However, equating errors due to the sampling of items have not often been taken into account, and the magnitude of these errors does not diminish when the sample size increases. For the estimates of population parameters (e.g. mean), the magnitude of equating errors due to the
sampling of items tends to be much larger than the magnitude of equating errors due to the sampling of students. Consequently, it is important to estimate the equating error due to the sampling of items.

Equating error (called 'link error' in PISA) is computed following the approach used in PISA 2009 (OECD 2012). Firstly calibrate the items using 2012, 2009 and 2006 data separately. If the link items behave exactly the same way in 2012, 2009 and 2006 (and they follow the Rasch model), there should only be a constant difference between 2012, 2009 and 2006 item parameters for matched items. However, in real life, items will vary across assessment cycles and some items will vary more than others.

The link error for comparison between 2009 and 2012 is 0.0308884 logits; transformed to the scientific literacy scale it is equal to a scaled score of 3.24. Similarly, the link error for comparison between 2006 and 2012 is 0.0388736 logits; transformed to the scientific literacy scale it is equal to a scaled score of 4.07.

Additional information about the computation of link error can be found in a data CD available to researchers or future contractors on application for approval to ACARA at datarequest@acara.edu.au

The link error is used only when comparisons across 2012, 2009 and 2006 results are made. For example, to test whether the mean achievement in 2012 differs from the mean achievement in 2006, the link error is added to the standard error of the difference, as illustrated in Table 8.1.

Table 8.1 Example of link error application in calculating standard error of difference

|  | 2012 Mean on <br> 2006 scale \& S.E. |  <br> S.E. | 2012 Mean <br> 2006 Mean | Standard error of <br> difference | Standardised <br> difference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NSW | $395(5.06)$ | $411(6.38)$ | -16 | SORT $\left(5.06^{2}+6.38^{2}+4.07^{2}\right)$ | $-1.76=-16 / 9.10$ <br> (not significant) |

## Chapter 9

## Scale and Proficiency Levels

For reporting purposes, student results are often summarised through the definition of a number of Proficiency Levels. That is, the proficiency scale is divided into a number of levels, with descriptions of skills attached to each level, and percentages of students at various levels are reported.

### 9.1 Proficiency Level cut-off points

In the 2003 assessment cycle, cut-off points along the proficiency scale were decided after consultations with science experts. In 2012, the 2003 cut-off points transformed to the 2006 scale were used (see Table 9.1). For further details, refer to the 2006 NAP-SL Technical Report, p. 73.

Table 9.1 Cut-off points for the 2012 NAP-SL

| Level | 2006 cut-off <br> points (logit) | Transformed to <br> 400/100 scale |
| :---: | :---: | :---: |
| 2 and below | $<-1.114$ | 262.293 |
| 3.1 | 0.130 | 392.577 |
| 3.2 | 1.373 | 522.861 |
| 3.3 | 2.617 | 653.145 |
| 4.0 | $>2.617$ | $>653.145$ |

As for 2003, 2006 and 2009, a response probability (RP) of 0.65 is used to place items in Proficiency Levels. The RP adjustment refers to '...the probability that a student in the middle of a level would correctly answer an item of average difficulty for that level'. (OECD 2000, p. 198)

### 9.2 Proficiency Levels of items

Table 9.2 shows the 2012 NAP-SL items and their corresponding levels on the proficiency scale.

Table 9.2 Proficiency Levels of items

| Item Label | $\begin{gathered} 2012 \\ \text { difficulty } \end{gathered}$ | 2012 item difficulty after adjustment for RP | Operational Level | Design level | Scaled score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PAQ01 | 3.225 | 4.306 | 4 and above | 3/4 | 830 |
| PAQ02 | 0.902 | 2.003 | $3 \cdot 3$ | 3 | 589 |
| PAQo3 | -1.130 | -0.011 | 3.1 | 3 | 378 |
| PAQ04 | -0.387 | 0.725 | 3.2 | 4 | 455 |
| PAQ05 | 2.053 | 3.144 | 4 and above | 3 | 708 |
| PAQ06 | 1.179 | 2.278 | $3 \cdot 3$ | 3 | 618 |
| PAQ07 | 1.192 | 2.291 | $3 \cdot 3$ | 3/4 | 619 |
| PAQo8 | 1.616 | 2.711 | 4 and above | 3 | 663 |
| PAQ09 | 1.094 | 2.194 | $3 \cdot 3$ | 3 | 609 |
| PAQ10 | -0.965 | 0.152 | 3.2 | 3 | 395 |
| PAQ11 | -0.874 | 0.242 | 3.2 | 3 | 404 |
| PBQ01 | -2.219 | -1.091 | 3.1 | 2 | 265 |
| PBQ02 | 2.683 | 3.769 | 4 and above | 3 | 774 |
| PBQ03 | -0.655 | 0.460 | 3.2 | 4 | 427 |
| PBQ04 | -1.249 | -0.129 | 3.1 | 3 | 365 |
| PBQ05 | -0.038 | 1.071 | 3.2 | 3 | 491 |
| PBQo6 | 3.040 | 4.123 | 4 and above | 3 | 811 |
| PBQ07 | -2.135 | -1.008 | 3.1 | 2 | 273 |
| PBQo8 | -2.088 | -0.961 | 3.1 | 3 | 278 |
| PBQ09 | -0.219 | 0.892 | 3.2 | 3 | 472 |
| PBQ10 | 3.501 | 4.580 | 4 and above | 4 | 859 |
| IDOB532 | 1.089 | 2.189 | 3.3 | 3 | 608 |
| IDOB533 | 1.368 | 2.465 | $3 \cdot 3$ | 3 | 637 |
| IDOB534 | 1.660 | 2.755 | 4 and above | 3 | 668 |
| IDOB483 | 0.577 | 1.681 | 3.3 | 2 | 555 |
| IDOB484 | 0.240 | 1.347 | 3.2 | 3 | 520 |
| IDOB486 | -0.880 | 0.236 | 3.2 | 3 | 404 |
| IDOB487 | 3.400 | 4.480 | 4 and above | 3 | 848 |
| IDOB489 | -0.308 | 0.804 | 3.2 | 2 | 463 |
| IDOB490 | -0.291 | 0.820 | 3.2 | 3 | 465 |
| IDOB491 | -0.449 | 0.664 | 3.2 | 3 | 449 |
| IDOB470 | 1.601 | 2.696 | 4 and above | 3 | 661 |
| IDOB471 | 0.192 | 1.299 | 3.2 | 4 | 515 |
| IDOB473 | 0.754 | 1.857 | $3 \cdot 3$ | 3 | 573 |
| IDOB097 | -1.835 | -0.710 | 3.1 | 2 | 305 |
| IDOB098 | -0.586 | 0.528 | 3.2 | 4 | 434 |
| IDOB149 | -1.216 | -0.097 | 3.1 | 2 | 369 |
| IDOB150 | -1.285 | -0.165 | 3.1 | 3 | 362 |
| IDOBo21 | 0.666 | 1.769 | 3.3 | 3 | 564 |
| IDOB022 | -0.952 | 0.165 | 3.2 | 4 | 396 |

Table 9.2 (Cont.) Proficiency Levels of items

| Item Label | $\begin{gathered} 2012 \\ \text { difficulty } \end{gathered}$ | 2012 item difficulty after adjustment for RP | Operational Level | Design level | Scaled score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IDOB023 | 0.561 | 1.665 | $3 \cdot 3$ | 5 | 553 |
| IDOB177 | 0.514 | 1.619 | $3 \cdot 3$ | 4 | 549 |
| IDOB178 | 0.634 | 1.738 | $3 \cdot 3$ | 3 | 561 |
| IDOBo84 | -0.937 | 0.180 | 3.2 | 3 | 398 |
| IDOBo85 | -0.879 | 0.237 | 3.2 | 3 | 404 |
| IDOBo86 | 1.435 | 2.532 | $3 \cdot 3$ | 3 | 644 |
| IDOBo87 | -0.472 | 0.641 | 3.2 | 4 | 446 |
| IDOBo88 | -0.904 | 0.213 | 3.2 | 4 | 401 |
| IDOB457 | -0.123 | 0.987 | 3.2 | 2 | 482 |
| IDOB458 | 0.793 | 1.895 | $3 \cdot 3$ | 3 | 578 |
| IDOB459 | 0.005 | 1.114 | 3.2 | 3 | 496 |
| IDOB460 | 0.040 | 1.149 | 3.2 | 3 | 499 |
| IDOB492 | -1.979 | -0.853 | 3.1 | 2 | 290 |
| IDOB493 | -0.085 | 1.025 | 3.2 | 3 | 486 |
| IDOB494 | 0.445 | 1.550 | $3 \cdot 3$ | 4 | 541 |
| IDOB496 | -0.783 | 0.333 | 3.2 | 3 | 414 |
| IDOB564 | 0.049 | 1.158 | 3.2 | 3/4 | 500 |
| IDOB565 | -1.779 | -0.655 | 3.1 | 4 | 310 |
| IDOB566 | 1.097 | 2.197 | $3 \cdot 3$ | 4 | 609 |
| IDOB568 | 1.254 | 2.352 | $3 \cdot 3$ | 4 | 625 |
| IDOB569 | -0.301 | 0.811 | 3.2 | 3 | 464 |
| IDOB570 | 1.661 | 2.756 | 4 and above | 3 | 668 |
| IDOB559 | -1.567 | -0.445 | 3.1 | 3 | 332 |
| IDOB561 | -0.292 | 0.819 | 3.2 | 3 | 465 |
| IDOB562 | 0.899 | 2.000 | $3 \cdot 3$ | 4 | 589 |
| IDOB563 | 0.445 | 1.550 | 3.3 | 3 | 541 |
| IDOB451 | -1.736 | -0.612 | 3.1 | 3 | 315 |
| IDOB452 | -1.734 | -0.610 | 3.1 | 3 | 315 |
| IDOB453 | 0.043 | 1.152 | 3.2 | 2 | 500 |
| IDOB454 | 0.453 | 1.558 | $3 \cdot 3$ | 3 | 542 |
| IDOB551 | 2.049 | 3.140 | 4 and above | 3 | 708 |
| IDOB552 | -1.012 | 0.106 | 3.1 | 3 | 390 |
| IDOB553 | -1.835 | -0.710 | 3.1 | 2 | 305 |
| IDOB554 | 1.634 | 2.729 | 4 and above | 3 | 665 |
| IDOB503 | -1.903 | -0.778 | 3.1 | 3 | 298 |
| IDOB506 | 2.295 | 3.384 | 4 and above | 3 | 734 |
| IDOB041 | -1.880 | -0.755 | 3.1 | 3 | 300 |
| IDOB044 | -0.901 | 0.216 | 3.2 | 4 | 402 |
| IDOB173 | -1.219 | -0.100 | 3.1 | 3 | 369 |
| IDOB474 | -2.589 | -1.458 | 2 and below | 4 | 226 |
| IDOB475 | -0.857 | 0.259 | 3.2 | 3 | 406 |
| IDOB184 | 0.418 | 1.523 | $3 \cdot 3$ | 4 | 539 |
| IDOB185 | -1.085 | 0.033 | 3.1 | 2 | 382 |
| IDOB186 | -0.164 | 0.946 | 3.2 | 3 | 478 |
| IDOB368 | 0.945 | 2.046 | $3 \cdot 3$ | 4 | 593 |

Table 9.2 (Cont.) Proficiency Levels of items

| Item Label | 2012 <br> difficulty | 2012 item difficulty after adjustment for RP | Operational Level | Design level | Scaled score |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IDOB370 | -2.874 | -1.740 | 2 and below | 3 | 197 |
| IDOB371 | 0.136 | 1.244 | 3.2 | 4 | 509 |
| IDOB461 | -2.034 | -0.908 | 3.1 | 2 | 284 |
| IDOB462 | -0.055 | 1.054 | 3.2 | 4 | 489 |
| IDOB517 | 0.090 | 1.198 | 3.2 | 3 | 505 |
| IDOB518 | -2.221 | -1.093 | 3.1 | 2 | 264 |
| IDOB519 | -0.647 | 0.468 | 3.2 | 3 | 428 |
| IDOB521 | -0.394 | 0.718 | 3.2 | 4 | 454 |
| IDOB522 | 0.096 | 1.204 | 3.2 | 3 | 505 |
| IDOB529 | 0.283 | 1.390 | $3 \cdot 3$ | 3 | 525 |
| IDOB530 | 1.735 | 2.829 | 4 and above | 3 | 675 |
| IDOB531 | 2.299 | 3.388 | 4 and above | 3 | 734 |
| IDOB444 | 0.935 | 2.036 | $3 \cdot 3$ | 4 | 592 |
| IDOB446 | 2.763 | 3.848 | 4 and above | 3/4 | 782 |
| IDOB417 | 0.450 | 1.555 | $3 \cdot 3$ | 3 | 542 |
| IDOB418 | -0.450 | 0.663 | 3.2 | 4 | 448 |
| IDOB419 | -0.510 | 0.603 | 3.2 | 4 | 442 |
| IDOB360 | -1.891 | -0.766 | 3.1 | 3 | 299 |
| IDOB363 | 0.300 | 1.406 | $3 \cdot 3$ | 3 | 526 |
| IDOB362 | -0.417 | 0.696 | 3.2 | 3 | 452 |
| IDOB308 | -1.709 | -0.585 | 3.1 | 3 | 318 |
| IDOB309 | -0.909 | 0.208 | 3.2 | 4 | 401 |
| IDOB310 | -0.748 | 0.367 | 3.2 | 3 | 417 |
| IDOB313 | 0.599 | 1.703 | $3 \cdot 3$ | 3 | 557 |
| IDOB315 | -0.649 | 0.466 | 3.2 | 3 | 428 |
| IDOB405 | 1.187 | 2.286 | $3 \cdot 3$ | 3 | 618 |
| IDOB406 | 1.718 | 2.812 | 4 and above | 4 | 674 |

## References

Ball, S., Rae, I., \& Tognolini, J. (2000). Options for the assessment and reporting of primary students in the key learning area of science to be used for the reporting of nationally comparable outcomes of schooling within the context of the National Goals for Schooling in the Twenty-First Century: National Education Performance Monitoring Taskforce.

Beaton, A.E., \& Gonzalez, E. (1995). NAEP primer. Chestnut Hill, MA: Boston College.

Biggs, J., \& Collis, K.F. (1982). Evaluating the quality of learning: The SOLO taxonomy. New York: Academic Press.

Goodrum, D., Hackling, M.W., \& Rennie, L. (2001). The status and quality of teaching and learning of science in Australian schools. Canberra: Department of Education, Training and Youth Affairs.

IEA (2009). TIMSS 2007 Technical Report. TIMSS \& PIRLS International Study Center, Lynch School of Education, Boston College.

Laugksch, R.C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94.

Mislevy, R.J., Beaton, A.E., Kaplan, B., \& Sheehan, K.M. (1992). Estimating population characteristics from sparse matrix samples of item responses. Journal of Educational Measurement, 29, 131-154.

OECD (1999). Measuring student knowledge and skills: A new framework for assessment. OECD: Paris.

OECD (2000). PISA 2000 Technical Report. OECD: Paris.

OECD (2012). PISA 2009 Technical Report. OECD: Paris.

Rust, K.F., \& Rao, J.N.K. (1996). Variance estimation for complex surveys using replication techniques. Statistical Methods in Medical Research, 5, 283-310.

Wu, M.L. (2005). The role of plausible values in large-scale surveys. Studies in Educational Evaluation, 31, 114-128.

## Appendix 1

## National Year 6 Primary Science Assessment Domain

## Assessment strands: Scientific literacy

The national review of the status and quality of teaching and learning of science in Australian schools (Goodrum, Hackling \& Rennie 2001) argued that the broad purpose of science in the compulsory years of schooling is to develop scientific literacy for all students.

Scientific literacy is a high priority for all citizens, helping them to:

- be interested in and understand the world around them
- engage in discourses of and about science
- be sceptical and questioning of claims made by others about scientific matters
- be able to identify questions, investigate and draw evidence-based conclusions
- make informed decisions about the environment and their own health and wellbeing.

Scientific literacy is important because it contributes to the economic and social wellbeing of the nation and improved decision-making at public and personal levels (Laugksch 2000).

The Programme for International Student Assessment (PISA) focuses on aspects of preparedness for adult life in terms of functional knowledge and skills that allow citizens to participate actively in society. It is argued that scientifically literate people are 'able to use scientific knowledge and processes not just to understand the natural world but also to participate in decisions that affect it' (OECD 1999, p. 13).

The OECD-PISA defined scientific literacy as:
... the capacity to use scientific knowledge, to identify questions (investigate) ${ }^{1}$ and to draw evidence-based conclusions in order to understand and help make decisions about the natural world and the changes made to it through human activity.

[^10]This definition has been adopted for the National Assessment Program Science Literacy (NAP-SL ) in accordance with the Ball et al. 2000 report recommendation.

## Scientific literacy: Progress Map

A scientific literacy Progress Map was developed based on the construct of scientific literacy and an analysis of state and territory curriculum and assessment frameworks. The Progress Map describes the development of scientific literacy across three strands of knowledge which are inclusive of Ball et al.'s concepts and processes and the elements of the OECD-PISA definition.

The five elements of scientific literacy, including concepts and processes used in PISA 2000 (OECD 1999), include:

1. demonstrating understanding of scientific concepts
2. recognising scientifically investigable questions
3. identifying evidence needed in a scientific investigation
4. drawing or evaluating conclusions
5. communicating valid conclusions.

These elements have been clustered into three more holistic strands which are described below. The second and third elements and conducting investigations to collect data are encompassed in Strand A; the fourth and fifth elements and conducting investigations to collect and interpret data are included in Strand B; and the first element is included in Strand C.

Strand A: Formulating or identifying investigable questions and hypotheses, planning investigations and collecting evidence.

This process strand includes posing questions or hypotheses for investigation or recognising scientifically investigable questions; planning investigations by identifying variables and devising procedures where variables are controlled; gathering evidence through measurement and observation; and making records of data in the form of descriptions, drawings, tables and graphs using a range of information and communication technologies.

Strand B: Interpreting evidence and drawing conclusions from students' own or others' data, critiquing the trustworthiness of evidence and claims made by others, and communicating findings.

This process strand includes identifying, describing and explaining the patterns and relationships between variables in scientific data; drawing conclusions that are evidence-based and related to the questions or hypotheses posed; critiquing the trustworthiness of evidence and claims made by others; and communicating findings using a range of scientific genres and information and communications technologies.

Strand C: Using science understandings for describing and explaining natural phenomena, and for interpreting reports about phenomena.

This conceptual strand includes demonstrating conceptual understandings by being able to describe, explain and make sense of natural phenomena; understand and interpret reports (e.g. TV documentaries, newspaper or magazine articles or conversations) related to scientific matters; and make decisions about scientific matters in students' own lives which may involve some consideration of social, environmental and economic costs and benefits.

Scientific literacy has been described here in three strands to facilitate the interpretation of student responses to assessment tasks. However, authentic tasks should require students to apply concepts and processes together to address problems set in real-world contexts. These tasks may involve ethical decisionmaking about scientific matters in students' own lives and some consideration of social, environmental and economic costs and benefits.

The scientific literacy Progress Map (see Table A1.1) describes progression in six levels from 1 to 6 in terms of three aspects:

- increasing complexity, from explanations that involve one aspect to several aspects, through to relationships between aspects of a phenomenon
- progression from explanations that refer to and are limited to directly experienced phenomena (concrete) to explanations that go beyond what can be observed directly and involve abstract scientific concepts (abstract)
- progression from descriptions of 'what' happened in terms of objects and events, to explanations of 'how' it happened in terms of processes, to explanations of 'why' it happened in terms of science concepts.

Strand C has been abstracted and makes no reference to particular science concepts or contexts. As the progression in this strand is based on increasing complexity and abstraction, links have been made to the Structure of Observed Learning Outcomes (SOLO) taxonomy (Biggs \& Collis 1982).

The taxonomy was written to describe levels of student responses to assessment tasks. The basic SOLO categories include:

```
prestructural no logical response
unistructural refers to only one aspect
multistructural refers to several independent aspects
relational can generalise (describe relationships between
    aspects) within the given or experienced context
```

extended abstract can generalise to situations not experienced.

The three main categories of unistructural, multistructural and relational can also be applied, as cycles of learning, to the four modes of representation:

| sensorimotor | the world is understood and represented through motor <br> activity |
| :--- | :--- |
| iconic | the world is represented as internal images |
| concrete | writing and other symbols are used to represent and <br> describe the experienced world |
| formal | the world is represented and explained using abstract <br> conceptual systems. |

The conceptual strand, Strand C, of the Progress Map therefore makes links to the SOLO categories of concrete unistructural (level 1), concrete multistructural (level 2), concrete relational (level 3), abstract unistructural (level 4), abstract multistructural (level 5) and abstract relational (level 6).

The SOLO levels of performance should not be confused with Piagetian stages of cognitive development. Biggs and Collis (1982, p. 22) explain that the relationship between Piagetian stages and SOLO levels is exactly analogous to that between ability and attainment' and that level of performance depends on quality of instruction, motivation to perform, prior knowledge and familiarity with the context. Consequently, performance for a given individual is highly variable and often sub-optimal.

NAP-SL focuses on levels 2, 3 and 4 of the scientific literacy Progress Map, the levels of scientific literacy attained by students in Year 6.

The agreed Proficiency Levels serve to further elaborate the Progress Map. Level 3 is described as $3.1,3.2$, and 3.3 . A 'proficient' standard is a challenging level of performance, with students needing to demonstrate more than minimal or elementary skills.

Table A1.1 Scientific Literacy Progress Map

| Level | Strands of scientific literacy |  |  |
| :---: | :---: | :---: | :---: |
|  | Strand A <br> Formulating or identifying investigable questions and hypotheses, planning investigations and collecting evidence. <br> Process strand: experimental design and data gathering. | Strand B <br> Interpreting evidence and drawing conclusions from students' own or others' data, critiquing the trustworthiness of evidence and claims made by others, and communicating findings. Process strand: interpreting experimental data. | Strand C <br> Using understandings for describing and explaining natural phenomena, and for interpreting reports about phenomena. Conceptual strand: applies conceptual understanding. |
| 6 | Uses scientific knowledge to formulate questions, hypotheses and predictions and to identify the variables to be changed, measured and controlled. <br> Trials and modifies techniques to enhance reliability of data collection. | Selects graph type and scales that display the data effectively. <br> Conclusions are consistent with the data, explain the patterns and relationships in terms of scientific concepts and principles, and relate to the question, hypothesis or prediction. <br> Critiques the trustworthiness of reported data (e.g. adequate control of variables, sample or consistency of measurements, assumptions made in formulating the methodology), and consistency between data and claims. | Explains complex interactions, systems or relationships using several abstract scientific concepts or principles and the relationships between them. SOLO taxonomy: Abstract relational |
| 5 | Formulates scientific questions or hypotheses for testing and plans experiments in which most variables are controlled. Selects equipment that is appropriate and trials measurement procedure to improve techniques and ensure safety. When provided with an experimental design involving multiple independent variables, can identify the questions being investigated. | Conclusions explain the patterns in the data using science concepts, and are consistent with the data. Makes specific suggestions for improving/extending the existing methodology (e.g. controlling an additional variable, changing an aspect of measurement technique). Interprets/compares data from two or more sources. Critiques reports of investigations noting any major flaw in design or inconsistencies in data. | Explains phenomena, or interprets reports about phenomena, using several abstract scientific concepts. SOLO taxonomy: Abstract multistructural |
| 4 | Formulates scientific questions, identifies the variable to be changed, the variable to be measured and in addition identifies at least one variable to be controlled. Uses repeated trials or replicates. <br> Collects and records data involving two or more variables. | Calculates averages from repeat trials or replicates, plots line graphs where appropriate. <br> Interprets data from line graph or bar graph. <br> Conclusions summarise and explain the patterns in the science data. <br> Able to make general suggestions for improving an investigation (e.g. make more measurements). | Explains interactions, processes or effects that have been experienced or reported, in terms of a non-observable property or abstract science concept. SOLO taxonomy: Abstract unistructural |

Table A1. 1 (Cont.) Scientific Literacy Progress Map

| Level | Strands of scientific literacy |  |  |
| :---: | :---: | :---: | :---: |
|  | Strand A <br> Formulating or identifying investigable questions and hypotheses, planning investigations and collecting evidence. <br> Process strand: experimental design and data gathering. | Strand B <br> Interpreting evidence and drawing conclusions from students' own or others' data, critiquing the trustworthiness of evidence and claims made by others, and communicating findings. Process strand: interpreting experimental data. | Strand C <br> Using understandings for describing and explaining natural phenomena, and for interpreting reports about phenomena. Conceptual strand: applies conceptual understanding. |
| 3 | Formulates simple scientific questions for testing and makes predictions. Demonstrates awareness of the need for fair testing and appreciates scientific meaning of 'fair testing'. Identifies variable to be changed and/or measured but does not indicate variables to be controlled. Makes simple standard measurements. <br> Records data as tables, diagrams or descriptions. | Displays data as tables or constructs bar graphs when given the variables for each axis. <br> Identifies and summarises patterns in science data in the form of a rule. Recognises the need for improvement to the method. Applies the rule by extrapolating and predicting. | Describes the relationships between individual events (including cause and effect relationships) that have been experienced or reported. Can generalise and apply the rule by predicting future events. <br> SOLO taxonomy: Concrete relational |
| 2 | Given a question in a familiar context, identifies that one variable/factor is to be changed (but does not necessarily use the term 'variable' to describe the changed variable). <br> Demonstrates intuitive level of awareness of fair testing. Observes and describes or makes non-standard measurements and limited records of data. | Makes comparisons between objects or events observed. Compares aspects of data in a simple supplied table of results. <br> Can complete simple tables and bar graphs given table column headings or prepared graph axes. | Describes changes to, differences between or properties of objects or events that have been experienced or reported. SOLO taxonomy: Concrete multistructural |
| 1 | Responds to the teacher's questions and suggestions, manipulates materials and observes what happens. | Shares observations; tells, acts out or draws what happened. Focuses on one aspect of the data. | Describes (or recognises) one aspect or property of an individual object or event that has been experienced or reported. <br> SOLO taxonomy: Concrete unistructural |

## Major scientific concepts in NAP-SL

A table of the major scientific concepts found most widely in the various state and territory curriculum documents has been developed to accompany the scientific literacy Progress Map (see Table A1.2).

These major concepts are broad statements of scientific understandings that Year 6 students would be expected to demonstrate. They provided item writers with a specific context in which to assess scientific literacy. An illustrative list of examples for each of the major concepts provides elaboration of these broad conceptual statements and, in conjunction with the scientific literacy Progress Map which describes the typical developmental stages for scientific literacy, was used as a guide for the development of assessment items.

It should be noted that, because the NAP-SL test instruments are constructed within the constraints of test length, it is not feasible to include all the listed concepts in instruments constructed for a single testing cycle.

Table A1.2 Major scientific concepts in NAP-SL

## Major scientific concepts $\quad$ Examples

## Earth and Space

Earth, sky and people: Our lives depend on air, water and materials from the ground; the ways we live depend on landscape, weather and climate.

The changing Earth: The Earth is composed of materials that are altered by forces within and upon its surface.

Our place in space: The Earth and life on Earth are part of an immense system called the universe.

Features of weather, soil and sky, and effects on me.
People use resources from the Earth; need to use them wisely.
Sustainability.
Changes in weather, weather data, seasons, soil landscape and sky (e.g. Moon phases, weathering and erosion, movement of the Sun and shadows, bush fires, land clearing).
Climate change.
Rotation of the Earth and night/day, spatial relationships between Sun, Earth and Moon.
Planets of our solar system and their characteristics.

Space exploration and new developments.

## Energy and Force

Energy and us: Energy is vital to our existence and our quality of life as individuals and as a society.

Transferring energy: Interaction and change involve energy transfers; control of energy transfer enables particular changes to be achieved.
Energy sources and receivers: Observed change in an object or system is indicated by the form and amount of energy transferred to or from it.

Uses of energy, patterns of energy use and variations with time of day and season.
Energy sources, renewable and non-renewable.
Sources, transfers, carriers and receivers of energy, energy and change.
Types of energy, energy of motion - toys and other simple machines - light, sound.
Forces as pushes and pulls, magnetic attraction and repulsion.

Living vs non-living.
Plant vs animal and major groups.
Dependence on the environment: Survival needs - food, space and shelter.

Interactions between organisms and interdependence (e.g. simple food chains).
Major structures and systems and their functions. Healthy lifestyle, diet and exercise.

Change over lifetime, reproduction and lifecycles. Adaptation to physical environment.

Materials have different properties and uses.
Processing materials to make useful things produces waste, use of alternative materials to better care for the environment.
Waste reduction - recycling. Nanotechnology.
The properties of materials can be explained in terms of their visible substructure, such as fibres. Materials can change their state and properties.
Solids, liquids and gases.
Appendix 2
Sample School Reports

## 7 December 2012

Principal Name
Sample School
Sample Lane
Sampleville SAMPLE 9998

## Dear Principal Name

## Re: 2012 National Assessment Program - Science Literacy (NAP-SL)

On behalf of the Australian Curriculum, Assessment and Reporting Authority (ACARA), I wish to thank you, your staff and the Year 6 students for participating in the 2012 National Assessment Program - Science Literacy in October this year.

We appreciate the effort your staff made to ensure that the assessment was administered consistently, completed and returned to us.

Enclosed with this letter is a report for your school outlining the performance of participating Year 6 students. There are two sets of results for each student: one for the objective (pencil and paper) test and one for the practical task.

There are seven A4 report sections - one for each of the seven test booklets used in the assessment. The results for each student for the objective (pencil and paper) test are located on the A4 report sheet(s) corresponding to the objective test booklet they completed. The students' results for the practical task are located on the A3 report sheet(s). All participating students at your school performed the same practical task.

We have included an information sheet to help you interpret your school's report. Please provide a copy of this information sheet to anyone at your school reviewing the report.

Please pass on our thanks to the staff and students involved in the 2012 National Assessment Program - Science Literacy.

Yours sincerely
Dr Sofia Kesidou
Project Director
Educational Assessment Australia UNSW Global

## 2012 National Assessment Program - Science Literacy

## Interpreting the Student Reports

Each Year 6 student completed one of the seven different objective (pencil and paper) test booklets and one of two practical tasks. The student reports provide information about each student's achievement on the particular objective test and practical task that s/he completed. Each question tested appeared in three of the seven test booklets in a different position. So although each test booklet was different there were commonalities between the booklets. Each test booklet comprised a different number of questions and only one third of the questions were in common with another booklet. Therefore, the total score achieved by any one student can only be compared to other students who completed the same booklet.

The objective test report and the practical task report include the following information:

1. the relevant major scientific concept addressed by each question (please refer to the key at the end of the A3 practical task report for more information)
2. a description of the skill tested by the question - practical task report only
3. a description of the question context and major concept example - objective booklets report only
4. the maximum possible score for each question and the percentage of students in the school (across multiple booklets) who achieved that score
5. the percentage of students in the sample population who achieved the maximum score on each question (the sample population includes approximately 5\% of the Year 6 national population)
6. the name of each student who completed the test for the corresponding test booklet, his/her achievement on each question and overall score on the test.

These reports can be used to:

- compare your students' achievement on each question against the sample population (by comparing the two columns showing the \% of students attaining the maximum score)
- compare student achievement within the seven booklets and practical task by looking at the maximum possible score and the total for each student for each test
- identify areas in the curriculum that may need to be covered in more detail by examining the performance of students in each science concept area.

Below is part of a sample report form with some key information explained.


2012 National Assessment Program - Science Literacy SAMPLE SCHOOL
Year 6 Practical Task: Reaction time
Major Scientific Concept: LT.2*
Major Concept Example: Major structures and systems and their functions






| Q |  |
| :--- | :--- |
| No. | Descriptor |
| $\mathbf{0 1}$ | Compares data to identify the smallest value recorded |
| $\mathbf{0 2}$ | Draws a conclusion that summarises the pattern in the data |
| $\mathbf{0 3}$ | Identifies an advantage of calculating average values from repeated trials |
| $\mathbf{0 4}$ | Applies knowledge of the nervous system to explain an experienced phenomenon |
| $\mathbf{0 5}$ | Selects an appropriate change to the method that would improve data collection |
| $\mathbf{0 6}$ | Identifies a suggestion that would result in an improvement to the method and justifies choice |
| $\mathbf{0 7}$ | Reads a conversion chart to determine reaction time |
| $\mathbf{0 8}$ | Interprets a column graph to identify the number of categories that match a specified criterion |
| $\mathbf{0 9}$ | Provides a justification for disagreeing with a statement that summarises the data in a column graph |
| $\mathbf{1 0}$ | Interprets a column graph to identify the category most likely to contain unreliable data |
|  |  |







$\qquad$ | Q |  |
| :--- | :--- |
| No. | Descriptor |
| 01 | Compares data to identify the smallest value recorded |
| 02 | Draws a conclusion that summarises the pattern in the data |
| 03 | Identifies an advantage of calculating average values from repeated trials |
| $\mathbf{0 4}$ | Applies knowledge of the nervous system to explain an experienced phenomenon |
| $\mathbf{0 5}$ | Selects an appropriate change to the method that would improve data collection |
| 06 | Identifies a suggestion that would result in an improvement to the method and justfies choice |
| 07 | Reads a conversion chart to determine reaction time |
| 08 | Interprets a column graph to identify the number of categories that match a specified criterion |
| 09 | Provides a justification for disagreeing with a statement that summarises the data in a column graph |
| 10 | Interprets a column graph to identify the category most likely to contain unreliable data |
|  |  |


A Science Literacy Progress Map has been developed based upon the construct of science literacy and on an analysis of State and Territory curriculum and assessment frameworks. A table of the major scientific concepts (listed below)
found most widely in the various State and Territory documents has been developed to accompany the Science Literacy Progress Map. These major scientific concepts are broad statements of scientific understandings that Year 6 students would be expected to demonstrate. For further details please visit: www.nap.edu.au/nap-sample-assessments/napsa-assessment-frameworks.html

* KEY: Major Scientific Concepts
Concept Area:
ES = Earth and Space
Major Scientific Concepts

| ES. 1 a Earth, sky and people: Our lives depend on |
| :--- |
| ari, water and materials from the ground; ;he ways we |
| live depend on landscape, weather and climate. |


| ES.2 $=$ The changing Earth: The Earth is composed |
| :--- |
| of materials that are altered by forces within and upon |
| its surface. |


| ES.3 = Our place in space: The Earth and life on |
| :--- |
| Earth are part of an immense system called the |
| universe. |

## Appendix 3

## Characteristics of the 2012 Sample

It was desirable to have sampling errors of similar magnitude between jurisdictions. Whilst equal sample sizes were initially assigned to each jurisdiction, the sample sizes were reduced for the ACT, NT and TAS given their relatively smaller populations. The procedures used to draw the 2012 sample of schools were nearly identical to those used in the 2006 and 2009 assessments. Table A3.1 shows the number of sampled schools and students. For example, it can be seen that the percentage of the students sampled from ACT, NT and TAS is smaller compared with other jurisdictions.

Table A3.1 Number of sampled schools and students in each jurisdiction

| State/ <br> Territory | Number of sampled <br> schools $^{\mathbf{1}}$ | Number of sampled <br> students | Percentage of total <br> population of students <br> sampled |
| :---: | :---: | :---: | :---: |
| ACT | 54 | 1305 | 8.9 |
| NSW | 92 | 2246 | 15.3 |
| NT | 50 | 959 | 6.5 |
| QLD | 92 | 2207 | 15.0 |
| SA | 94 | 2082 | 14.2 |
| TAS | 64 | 1420 | 9.7 |
| VIC | 93 | 2112 | 14.4 |
| WA | 94 | 2344 | 16.0 |
| Total | 633 | 14675 | 100.0 |

In this and the following tables, percentages have been rounded and may not add up to 100 .

[^11]Table A3.2 shows the proportion of students in each sector by jurisdiction for both the selected sample and the population according to the sample frame. The table shows that the difference between the selected sample and the population is generally less than 2 per cent. This indicates that the proportion of students in the selected sample closely matches the population when comparing sector by sector within a jurisdiction.

Table A3.2 Comparison of selected sample and population sector proportions across jurisdictions

| State/ Territory | Sector | Population |  |  | Selected sample |  |  | Difference (population -sample) proportions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Schools | Students | Sector proportions | Schools | Students | Sector proportions |  |
| ACT | Cath | 25 | 1317 | 29.2\% | 15 | 404 | 31.0\% | -1.7\% |
|  | Govt | 59 | 2544 | 56.5\% | 32 | 737 | 56.5\% | 0.0\% |
|  | Other | 13 | 642 | 14.3\% | 7 | 164 | 12.6\% | 1.7\% |
| NSW | Total | 97 | 4503 | 100.0\% | 54 | 1305 | 100.0\% | 0.0\% |
|  | Cath | 442 | 17808 | 20.3\% | 17 | 463 | 20.6\% | -0.3\% |
|  | Govt | 1633 | 59610 | 68.0\% | 64 | 1549 | 69.0\% | -1.0\% |
|  | Other | 289 | 10291 | 11.7\% | 11 | 234 | 10.4\% | 1.3\% |
| NT | Total | 2364 | 87709 | 100.0\% | 92 | 2246 | 100.0\% | 0.0\% |
|  | Cath | 12 | 369 | 11.5\% | 5 | 114 | 11.9\% | -0.3\% |
|  | Govt | 131 | 2499 | 78.1\% | 40 | 732 | 76.3\% | 1.8\% |
|  | Other | 15 | 330 | 10.3\% | 5 | 113 | 11.8\% | -1.5\% |
| QLD | Total | 158 | 3198 | 100.0\% | 50 | 959 | 100.0\% | 0.0\% |
|  | Cath | 224 | 10181 | 17.2\% | 15 | 448 | 20.3\% | -3.1\% |
|  | Govt | 1001 | 41371 | 69.8\% | 66 | 1503 | 68.1\% | 1.7\% |
|  | Other | 167 | 7679 | 13.0\% | 11 | 256 | 11.6\% | 1.4\% |
| SA | Total | 1392 | 59231 | 100.0\% | 92 | 2207 | 100.0\% | 0.0\% |
|  | Cath | 83 | 3632 | 18.8\% | 17 | 411 | 19.7\% | -0.9\% |
|  | Govt | 434 | 12345 | 63.9\% | 61 | 1320 | 63.4\% | 0.5\% |
|  | Other | 88 | 3349 | 17.3\% | 16 | 351 | 16.9\% | 0.5\% |
| TAS | Total | 605 | 19326 | 100.0\% | 94 | 2082 | 100.0\% | 0.0\% |
|  | Cath | 32 | 1110 | 16.7\% | 10 | 240 | 16.9\% | -0.2\% |
|  | Govt | 153 | 4838 | 72.8\% | 46 | 1018 | 71.7\% | 1.1\% |
|  | Other | 36 | 695 | 10.5\% | 8 | 162 | 11.4\% | -0.9\% |
|  | Total | 221 | 6643 | 100.0\% | 64 | 1420 | 100.0\% | 0.0\% |
| VIC | Cath | 396 | 14262 | 22.7\% | 21 | 490 | 23.2\% | -0.5\% |
|  | Govt | 1151 | 40717 | 64.7\% | 60 | 1354 | 64.1\% | 0.6\% |
|  | Other | 219 | 7937 | 12.6\% | 12 | 268 | 12.7\% | -0.1\% |
|  | Total | 1766 | 62916 | 100.0\% | 93 | 2112 | 100.0\% | 0.0\% |
| WA | Cath | 132 | 4989 | 16.9\% | 17 | 451 | 19.2\% | -2.3\% |
|  | Govt | 624 | 20163 | 68.4\% | 64 | 1582 | 67.5\% | 0.9\% |
|  | Other | 127 | 4334 | 14.7\% | 13 | 311 | 13.3\% | 1.4\% |
|  | Total | 883 | 29486 | 100.0\% | 94 | 2344 | 100.0\% | 0.0\% |
| AUST | Cath | 1346 | 53668 | 19.7\% | 117 | 3021 | 20.6\% | -0.9\% |
|  | Govt | 5186 | 184087 | 67.4\% | 433 | 9795 | 66.7\% | 0.7\% |
|  | Other | 954 | 35257 | 12.9\% | 83 | 1859 | 12.7\% | 0.2\% |
|  | Total | 7486 | 273012 | 100.0\% | 633 | 14675 | 100.0\% | 0.0\% |

Schools were also classified according to their enrolment size. Small schools (i.e. moderately small and very small schools) were under-sampled and large schools were slightly over-sampled. This approach was adopted to ensure that an adequate number of students would be assessed, while still ensuring very small schools would be represented without vastly increasing the overall number of schools sampled. Very small schools were under-sampled to a larger degree than moderately small schools. Table A3.3 shows the number of schools according to school size for the population and the selected sample. Table A3.3 also shows the percentage of students in the population compared to the selected sample according to school size. When considered in terms of the number of students, the under-sampling of small schools is not as noticeable. For example, 4.3 per cent of the population attend a very small school which is very similar to the 3.1 per cent of students from very small schools included in the selected sample.

Table A3.3 Comparison of population and selected sample proportions according to school size

| Population | Selected sample |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | School size | Schools | Students | Proportion <br> of students <br> by school <br> size | Schools | Students | Proportion <br> of students <br> by school <br> size |
|  | 4298 | 238819 | 87.5 | 502 | 12914 | 88.0 |  |
| Moderately small | 1209 | 22250 | 8.2 | 72 | 1313 | 8.9 |  |
| Very small | 1979 | 11872 | 4.3 | 59 | 448 | 3.1 |  |
| Total | 7486 | 272941 | 100.0 | 633 | 14675 | 100.0 |  |

## Appendix 4

 Technical Notes on Sampling
## Stratification details

For each jurisdiction, schools were separated into three separate strata according to their size: very small; moderately small; and large. The target proportion of students and number of schools selected within each of the strata were determined using the PISA treatment of small schools (OECD 2012, pp. 68-69). Essentially, the aim was to balance selecting an adequate sample without substantially increasing the number of sampled schools.

Large schools within each jurisdiction were further separated according to their school sector. The target numbers of large schools were proportionally allocated amongst the school sectors for each jurisdiction. Very small and moderately small strata were sorted according to school sector, then by the remaining implicit stratification variables - NAPLAN quintile, Geographic location and Measure of Size (MOS). This strategy meant that the sampling frame was divided into 40 explicit strata overall. That is, there were 24 strata containing large schools (8 jurisdictions $\times 3$ sectors); eight moderately small school strata (1 per jurisdiction); and eight very small school strata (1 per jurisdiction).

The stratification for small schools was slightly more complex than for large schools. Small schools were ordered by Sector, NAPLAN quintile, Geographic location and then MOS. The sort order was alternated so that 'like schools' were always nearby.

Each stratum was sorted first by sector. Within each sector, schools were further sorted by NAPLAN quintile. This sort order was alternated between ascending to descending between sectors (i.e. Sector 1 had NAPLAN quintile sorted ascending, Sector 2 had NAPLAN quintile sorted descending, Sector 3 had NAPLAN quintile sorted ascending). Similarly, within each NAPLAN quintile category, schools were further sorted by Geographic location. This sort order was alternated between ascending to descending between sectors (i.e. NAPLAN quintile 1 had Geographic location sorted ascending, NAPLAN quintile 2 had Geographic location sorted descending, NAPLAN quintile 3 had Geographic location sorted ascending etc.) The sort order for MOS was then alternated from low to high, then high to low, each time a new Sector/ NAPLAN quintile / Geographic location classification was encountered. Table A4.1 illustrates the sort-order procedures that were employed for small Catholic schools.

Table A4.1 The sort ordering procedures employed for small Catholic schools

| Sector | NAPLAN quintile | Geographic location | ENR sort order |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | A |
| 1 | 1 | 2 | D |
| 1 | 1 | 3 | A |
| 1 | 2 | 3 | D |
| 1 | 2 | 2 | A |
| 1 | 2 | 1 | D |
| 1 | 3 | 1 | A |
| 1 | 3 | 2 | D |
| 1 | 3 | 3 | A |
| 1 | 4 | 3 | D |
| 1 | 4 | 2 | A |
| 1 | 4 | 1 | D |
| 1 | 5 | 1 | A |
| 1 | 5 | 2 | D |
| 1 | 5 | 3 | A |

After small schools were stratified, the MOS for each school in the stratum was set equal to the average ENR of all schools within that particular stratum. This was equivalent to selecting a simple random sample of small schools. Such a strategy meant that very small schools would not be assigned excessively large sampling weights.

## Random start and sampling interval values

The sampling interval ([stratum enrolment size]/[planned number of schools]) is rounded to the nearest integer. Table A4.2 shows the starting values used to draw the sample for each explicit stratum.

Table A4.2 Stratum variables for sample selection

| Stratum | MOS | Number of schools | Interval | Random start |
| :---: | :---: | :---: | :---: | :---: |
| ACT_Large_C | 1198 | 15 | 80 | 12 |
| ACT_Large_G | 2400 | 30 | 80 | 65 |
| ACT_Large_I | 592 | 7 | 85 | 38 |
| ACT_ModSmall | 268 | 4 | 67 | 61 |
| ACT_VerySmall | 45 | 1 | 45 | 12 |
| NSW_Large_C | 15616 | 15 | 1041 | 194 |
| NSW_Large_G | 52816 | 52 | 1016 | 482 |
| NSW_Large_I | 8930 | 9 | 992 | 758 |
| NSW_ModSmall | 7001 | 9 | 778 | 144 |
| NSW_VerySmall | 3346 | 7 | 478 | 445 |
| NT_Large_C | 326 | 4 | 82 | 38 |
| NT_Large_G | 1826 | 23 | 79 | 2 |
| NT_Large_I | 203 | 3 | 68 | 2 |
| NT_ModSmall | 454 | 8 | 57 | 10 |
| NT_VerySmall | 389 | 12 | 32 | 17 |
| QLD_Large_C | 9337 | 14 | 667 | 636 |
| QLD_Large_G | 37320 | 54 | 691 | 342 |
| QLD_Large_I | 7034 | 10 | 703 | 97 |
| QLD_ModSmall | 3161 | 6 | 527 | 132 |
| QLD_VerySmall | 2379 | 8 | 297 | 218 |
| SA_Large_C | 3201 | 14 | 229 | 168 |
| SA_Large_G | 9779 | 44 | 222 | 107 |
| SA_Large_I | 2943 | 13 | 226 | 183 |
| SA_ModSmall | 2464 | 15 | 164 | 147 |
| SA_VerySmall | 939 | 8 | 117 | 34 |
| TAS_Large_C | 926 | 8 | 116 | 13 |
| TAS_Large_G | 4029 | 35 | 115 | 76 |
| TAS_Large_I | 498 | 4 | 125 | 102 |
| TAS_ModSmall | 747 | 9 | 83 | 13 |
| TAS_VerySmall | 443 | 7 | 63 | 35 |
| VIC_Large_C | 12145 | 17 | 714 | 331 |
| VIC_Large_G | 35059 | 48 | 730 | 209 |
| VIC_Large_I | 7025 | 10 | 703 | 423 |
| VIC_ModSmall | 6131 | 11 | 557 | 217 |
| VIC_VerySmall | 2556 | 7 | 365 | 145 |
| WA_Large_C | 4517 | 13 | 347 | 4 |
| WA_Large_G | 17574 | 51 | 345 | 268 |
| WA_Large_I | 3756 | 11 | 341 | 180 |
| WA_ModSmall | 2163 | 9 | 240 | 49 |
| WA_VerySmall | 1476 | 9 | 164 | 32 |

## Appendix 5

Programming Notes on Sampling

## E. 1 SPSS syntax for sample selection

```
*===========================================
*============================================
    NAP-SL 2012 SAMPLE PROCEDURE
*===========================================
*=============================================
```

*SPSS version 20.

```
*==========================================
```

    PPS SAMPLE MACRO
    * ============================================.
*-

This macro will select sample schools for a particular stratum
The following arguments are required:
$\sim \sim \sim$ enrsize is equal to average enrolment size for modsmall and verysmall strata otherwise, set enrsize equal to 999 for large school strata
$\sim \sim \sim s t r a t a$ is the name of the current stratum
$\sim \sim \sim$ randm is a random number
$\sim \sim \sim$ const is the sampling interval

DATASET CLOSE ALL.
GET FILE='SampleFrame.sav'.

```
*----------------------------------------------------------------------
```

* EXPLICIT STRATIFICATION.
*-
select if (RTRIM(Stratum)=!strata).
exe.
*-
* IMPLICIT STRATIFICATION.
*------------------------------------------------------------------------
*all implicit stratification variables need to be numeric ordinal categories.
*sequential numbering is not required.
*~~~assign SectorId as implicit stratification variable.
COMPUTE imp_o = SectorId.
SORT CASES BY imp_o (A).
RANK VARIABLES = imp_o (A) /RANK /PRINT=YES /TIES=CONDENSE.
*~~~add NAPLANDATA as implicit stratification variable.
DO IF (MOD $($ Rimp_o,2) > 0 ).
compute imp_1 $=($ Rimp_o*100 $)+\left(\right.$ NAPLANDATA* $\left.^{*} 1\right)$.
ELSE.
compute imp_1 $=\left(\operatorname{Rimp} \_0^{*} 100\right)+$ NAPLANDATA.
END IF.
SORT CASES BY imp_1(A).
RANK VARIABLES $=$ imp_1(A) $/$ RANK $/$ PRINT=YES $/$ TIES $=$ CONDENSE.
*~~~add GeoId as implicit stratification variable.
DO IF (MOD (Rimp_1,2) > 0).
compute imp_2 $=\left(\operatorname{Rimp}_{-} 1^{*} 100\right)+\left(\operatorname{GeoId}^{*}-1\right)$.
ELSE.
compute imp_2 $=($ Rimp_1*100 $)+$ GeoId.
END IF.
SORT CASES BY imp_2(A).
RANK VARIABLES = imp_2(A) /RANK /PRINT=YES /TIES=CONDENSE.
*~~~add gro6 as implicit stratification variable.
DO IF (MOD (Rimp_2,2) > 0).
compute imp_3 $=($ Rimp_2*1000 $)+\left(\right.$ gro6* $\left.^{*}-1\right)$.
ELSE.
compute imp_3 $=\left(\operatorname{Rimp} \_2^{*} 1000\right)+$ gro6.
END IF.
SORT CASES BY imp_3 (A).
RANK VARIABLES = imp_3 (A) /RANK /PRINT=YES /TIES=CONDENSE.

SORT CASES BY imp_o (A) imp_1 (A) imp_2 (A) imp_3 (A).
*file is now implicitly stratified.
*----------------------------------------------------------------------------

* MEASURE OF SIZE (MOS) ADJUSTMENTS.

*=======SMALL SCHOOLS=======.
!IF (!enrsize = 999)!THEN.
*do nothing.
!ELSE.
* for small schools set MOS equal to avg enr size for the explicit stratum.
compute tmpgro6 $=$ gro6.
compute gro6 $=$ !enrsize.
!IFEND.
*=======SET VERY LARGE SCHOOLS EQUAL TO THE SAMPLING
INTERVAL=======.
if (gro6>!const) gro6 = !const.
exe.
*-
* SELECT SCHOOLS WITH PROBABILITY PROPORTIONAL TO SIZE (PPS)

compute ranstart $=$ !randm.
compute interval $=$ !const.
compute case = \$casenum.
exe.
if (\$casenum = 1) ticket1 = 1 .
if $(\$$ casenum $=1)$ ticket2 $=$ gro6.
if $(\$$ casenum $>1)$ ticket1 $=\operatorname{lag}($ ticket 2$)+1$.
if $(\$$ casenum $>1)$ ticket2 $=$ lag(ticket2 $)+$ gro6.
if ( $\$$ casenum $=1$ ) selector $=$ ranstart .
if (\$casenum $>1$ ) selector $=$ lag(selector).
string select (a3).
compute select = ' $\qquad$ ,
if (ticket1 <= selector and selector <= ticket2) select = 'YES'.
if (select = 'YES') selector $=$ selector + interval.
*HANDLE FOR LARGE SCHOOLS.
if (select $=$ 'YES' and selector $<$ ticket 2 ) select $=$ 'SOS'.
exe.
if (\$casenum = 1) wintickt=ranstart.
if (\$casenum > 1) wintickt=lag(selector).
exe.
* $=======$ SELECT REPLACEMENT SCHOOLS======= .

DO IF ((lag(select)='YES' or lag(select)='SOS') and select = ' $\qquad$ ').
compute select $=$ ' $R \_1$ '.
compute replaceid $=$ lag(schoolid).
END IF.
DO IF ((lag(select,2)='YES' or lag(select,2)='SOS') and select = ' $\qquad$ , and
$\operatorname{lag}(\$$ casenum,2)=1).
compute select = 'R_2'.
compute replaceid $=\operatorname{lag}($ schoolid,2).
END IF.
SORT CASES BY case (D) .
DO IF ((lag(select)='YES' or lag(select)='SOS') and select = ' $\qquad$ ').
compute select = 'R_2'.
compute replaceid $=$ lag(schoolid).
END IF.
DO IF ((lag(select,2)='YES' or lag(select,2)='SOS') and select = ' $\qquad$ , and
$\operatorname{lag}(\$$ casenum,2)=1).
compute select $=$ ' $R \_1$ '.
compute replaceid $=\operatorname{lag}($ schoolid,2).
END IF.
SORT CASES BY case (A) .
if (select $=$ 'YES' or select $=$ 'SOS') replaceid $=$ schoolid.
exe.
SAVE OUTFILE=!QUOTE(!CONCAT(‘All_’,!UNQUOTE(!strata), '.sav’)).
*=======KEEP SAMPLED AND REPLACEMENT SCHOOLS========.
set width $=120$.
set length $=1000$.
title Schools Selected from the Specified Stratum !strata.
select if (select='YES' or select='SOS').
list var=OfficialSchoolName stratum gro6 ticket1 ticket2 wintickt select / format = numbered.
title.
SAVE OUTFILE=!QUOTE(!CONCAT('Sample_’,!UNQUOTE(!strata) , ‘.sav’)).

## !ENDDEFINE.

* = ===========================================1


## DRAW SAMPLE

*============================================.
*set working file directory.
CD ‘C: \EMS $\backslash$ NAPSL12 $\backslash$ SampleSchools’.
!SAMPLE strata='ACT_Large_C' const=80 randm=12 enrsize=999.
!SAMPLE strata='ACT_Large_G' const=80 randm=65 enrsize=999.
!SAMPLE strata='ACT_Large_I' const=85 randm=38 enrsize=999.
!SAMPLE strata='ACT_ModSmall' const=67 randm=61 enrsize=19.
!SAMPLE strata='ACT_VerySmall' const=45 randm=12 enrsize $=8$.
!SAMPLE strata='NSW_Large_C' const=1041 randm=194 enrsize=999.
!SAMPLE strata='NSW_Large_G' const=1016 randm=482 enrsize=999.
!SAMPLE strata='NSW_Large_I' const=992 randm=758 enrsize=999.
!SAMPLE strata='NSW_ModSmall' const=778 randm=144 enrsize=18.
!SAMPLE strata='NSW_VerySmall' const=478 randm=445 enrsize=6.
!SAMPLE strata='NT_Large_C' const=82 randm=38 enrsize=999.
!SAMPLE strata='NT_Large_G' const=79 randm=2 enrsize=999.
!SAMPLE strata='NT_Large_I' const=68 randm=2 enrsize=999.
!SAMPLE strata='NT_ModSmall' const=57 randm=10 enrsize $=17$.
!SAMPLE strata='NT_VerySmall' const=32 randm=17 enrsize $=5$.
!SAMPLE strata='QLD_Large_C' const=667 randm=636 enrsize=999.
!SAMPLE strata='QLD_Large_G' const=691 randm=342 enrsize=999.
!SAMPLE strata='QLD_Large_I' const=703 randm=97 enrsize=999.
!SAMPLE strata='QLD_ModSmall' const=527 randm=132 enrsize=18.
!SAMPLE strata='QLD_VerySmall' const=297 randm=218 enrsize=6.
!SAMPLE strata='SA_Large_C' const=229 randm=168 enrsize=999.
!SAMPLE strata='SA_Large_G' const=222 randm=107 enrsize=999.
!SAMPLE strata='SA_Large_I' const=226 randm=183 enrsize=999.
!SAMPLE strata='SA_ModSmall' const=164 randm=147 enrsize=19.
!SAMPLE strata='SA_VerySmall' const=117 randm=34 enrsize=6.
!SAMPLE strata='TAS_Large_C' const=116 randm=13 enrsize=999.
!SAMPLE strata='TAS_Large_G' const=115 randm=76 enrsize=999.
!SAMPLE strata='TAS_Large_I' const=125 randm=102 enrsize=999.
!SAMPLE strata='TAS_ModSmall' const=83 randm=13 enrsize=19.
!SAMPLE strata='TAS_VerySmall' const=63 randm=35 enrsize=7.
!SAMPLE strata='VIC_Large_C' const=714 randm=331 enrsize=999.
!SAMPLE strata='VIC_Large_G' const=730 randm=209 enrsize=999.
!SAMPLE strata='VIC_Large_I' const=703 randm=423 enrsize=999.
!SAMPLE strata='VIC_ModSmall' const= $=557$ randm $=217$ enrsize $=19$.
!SAMPLE strata='VIC_VerySmall' const=365 randm=145 enrsize=6.
!SAMPLE strata='WA_Large_C' const=347 randm=4 enrsize=999.
!SAMPLE strata='WA_Large_G' const=345 randm=268 enrsize=999.
!SAMPLE strata='WA_Large_I' const=341 randm=180 enrsize=999.
!SAMPLE strata='WA_ModSmall' const=240 randm=49 enrsize=18.
!SAMPLE strata='WA_VerySmall' const=164 randm=32 enrsize=6.

ALL SCHOOLS IN SINGLE FILE WITH RESULTS
*==========================================.

ADD FILES<br>/FILE='All_ACT_Large_C.sav'<br>/FILE='All_ACT_Large_G.sav'<br>/FILE='All_ACT_Large_I.sav'<br>/FILE='All_ACT_ModSmall.sav'<br>/FILE='All_ACT_VerySmall.sav'<br>/FILE='All_NSW_Large_C.sav'<br>/FILE='All_NSW_Large_G.sav'<br>/FILE='All_NSW_Large_I.sav’<br>/FILE='All_NSW_ModSmall.sav'<br>/FILE='All_NSW_VerySmall.sav'<br>/FILE='All_NT_Large_C.sav'<br>/FILE='All_NT_Large_G.sav'<br>/FILE='All_NT_Large_I.sav'<br>/FILE='All_NT_ModSmall.sav'<br>/FILE='All_NT_VerySmall.sav'<br>/FILE='All_QLD_Large_C.sav'<br>/FILE='All_QLD_Large_G.sav'<br>/FILE='All_QLD_Large_I.sav'<br>/FILE='All_QLD_ModSmall.sav'<br>/FILE='All_QLD_VerySmall.sav'<br>/FILE='All_SA_Large_C.sav'<br>/FILE='All_SA_Large_G.sav'<br>/FILE='All_SA_Large_I.sav'<br>/FILE='All_SA_ModSmall.sav'<br>/FILE='All_SA_VerySmall.sav'<br>/FILE='All_TAS_Large_C.sav'<br>/FILE='All_TAS_Large_G.sav’<br>/FILE='All_TAS_Large_I.sav'<br>/FILE='All_TAS_ModSmall.sav'<br>/FILE='All_TAS_VerySmall.sav'<br>/FILE='All_VIC_Large_C.sav'<br>/FILE='All_VIC_Large_G.sav'<br>/FILE='All_VIC_Large_I.sav'

$$
\begin{aligned}
& \text { /FILE='All_VIC_ModSmall.sav' } \\
& \text { /FILE='All_VIC_VerySmall.sav' } \\
& \text { /FILE='All_WA_Large_C.sav' } \\
& \text { /FILE='All_WA_Large_G.sav' } \\
& \text { /FILE='All_WA_Large_I.sav' } \\
& \text { /FILE='All_WA_ModSmall.sav' } \\
& \text { /FILE='All_WA_VerySmall.sav'. } \\
& \text { EXECUTE. } \\
& \text { SAVE OUTFILE='AllSchools.sav'. }
\end{aligned}
$$

```
*============================================
    LIST OF SAMPLE SCHOOLS
```



```
ADD FILES
    /FILE='Sample_ACT_Large_C.sav'
    /FILE='Sample_ACT_Large_G.sav'
    /FILE='Sample_ACT_Large_I.sav'
    /FILE='Sample_ACT_ModSmall.sav'
    /FILE='Sample_ACT_VerySmall.sav'
    /FILE='Sample_NSW_Large_C.sav'
    /FILE='Sample_NSW_Large_G.sav'
/FILE='Sample_NSW_Large_I.sav'
/FILE='Sample_NSW_ModSmall.sav'
/FILE='Sample_NSW_VerySmall.sav'
/FILE='Sample_NT_Large_C.sav'
/FILE='Sample_NT_Large_G.sav'
/FILE='Sample_NT_Large_I.sav'
/FILE='Sample_NT_ModSmall.sav'
/FILE='Sample_NT_VerySmall.sav'
/FILE='Sample_QLD_Large_C.sav'
/FILE='Sample_QLD_Large_G.sav'
/FILE='Sample_QLD_Large_I.sav'
/FILE='Sample_QLD_ModSmall.sav'
/FILE='Sample_QLD_VerySmall.sav'
/FILE='Sample_SA_Large_C.sav'
/FILE='Sample_SA_Large_G.sav'
/FILE='Sample_SA_Large_I.sav'
/FILE='Sample_SA_ModSmall.sav'
/FILE='Sample_SA_VerySmall.sav'
/FILE='Sample_TAS_Large_C.sav'
/FILE='Sample_TAS_Large_G.sav'
/FILE='Sample_TAS_Large_I.sav'
/FILE='Sample_TAS_ModSmall.sav'
/FILE='Sample_TAS_VerySmall.sav'
/FILE='Sample_VIC_Large_C.sav'
/FILE='Sample_VIC_Large_G.sav'
/FILE='Sample_VIC_Large_I.sav'
/FILE='Sample_VIC_ModSmall.sav'
/FILE='Sample_VIC_VerySmall.sav'
/FILE='Sample_WA_Large_C.sav'
```

/FILE='Sample_WA_Large_G.sav'
/FILE='Sample_WA_Large_I.sav'
/FILE='Sample_WA_ModSmall.sav' /FILE='Sample_WA_VerySmall.sav'.
EXECUTE.
SAVE OUTFILE='SampleSchools2012.sav'.

# Appendix 6 <br> Student Participation Form 

NAP-SL STUDENT PARTICIPATION FORM (SPF)

The Student Participation Form (SPF) lists students registered to take part in the National Assessment Program - Science Literacy. Please complete | School Name: | Sample School |
| :--- | :--- |
| State/Territory: | Sample State |
| School ID: | 4 |
| Class(es) involved: | Year 6 |
| Class practical task: | Reaction time |

## PART A - SAMPLING INFORMATION | (A) | (B) | $(\mathrm{C})$ | $(\mathrm{D})$ |
| :---: | :---: | :---: | :---: |
| No. of | No. of | Estimated | Enrolled |
| Students |  |  |  |
| in Year 6 | Classes | in Year 6 | Sample Size | Sample Size 24

Please sign below to acknowledge that you have checked the Test Booklets and Student Participation Form and that all is complete and in order. Don't forget to take a photocopy of both sides of this form and keep a copy for your records. Return the original with the test booklets.

## School Contact Officer: Name:

Name:
This table relates to PART B - STUDENT PARTICIPATION: See full explanation on pages 8-10 of the Test Administrator's Manual

| This table relates to PART B - STUDENT PARTICIPATION: See full explanation on pages 8-10 of the Test Administrator's Manual |  |  |
| :--- | :--- | :--- |
| INDIGENOUS CODES (Column 5) | SPECIAL EDUCATION NEEDS (SEN) CODES (Column 7) | NON-INCLUSION CODES (Columns 9 and 11) |
| $1=$ Aboriginal but not Torres Strait Islander Origin | $0=$ No special education needs | $10=$ Absent |
| $2=$ Torres Strait Islander but not Aboriginal Origin | $1=$ Functional disability | $11=$ Not included; functional disability |
| $3=$ Both Aboriginal and Torres Strait Islander Origin | $2=$ Intellectual disability | $12=$ Not included; intellectual disability |
| $4=$ Neither Aboriginal nor Torres Strait Islander Origin | $3=$ Limited test language proficiency | $13=$ Not included; limited test language proficiency |
| $9=$ Not stated/Unknown |  | $14=$ Student or parent refusal |


| PART B - STUDENT PARTICIPATION |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1) <br> Student ID | (2) <br> Student Name | (3) <br> Booklet No. (1-7) | $\begin{gathered} \text { (4) } \\ \text { Sex } \\ \text { F or M } \end{gathered}$ | (5) <br> Indigenous Code (see overleaf) | (6) Birth Date (DD-MM-YY) | (7) <br> SEN Code (see overleaf) | $(8)$ Objective Test Not attempted $=0$ Attempted $=1$ | (9) Non-Inclusion Code (see overleaf) | $(10)$ Practical Task Not attempted $=0$ Attempted $=1$ | (11) <br> Non-Inclusion Code (see overleaf) |
| 858415 | Student 858415 | 4 | F | 4 | 20/05/01 |  |  |  |  |  |
| 858423 | Student 858423 | 5 | M | 4 | 09/08/00 |  |  |  |  |  |
| 858431 | Student 858431 | 6 | M | 9 | 16/02/01 |  |  |  |  |  |
| 858357 | Student 858357 | 7 | M | 4 | 25/04/01 |  |  |  |  |  |
| 858365 | Student 858365 | 1 | M | 4 | 14/11/00 |  |  |  |  |  |
| 858373 | Student 858373 | 2 | M | 4 | 07/11/00 |  |  |  |  |  |
| 858266 | Student 858266 | 3 | F | 9 | 23/05/01 |  |  |  |  |  |
| 858449 | Student 858449 | 4 | M | 4 | 12/03/01 |  |  |  |  |  |
| 858456 | Student 858456 | 5 | M | 4 | 22/01/01 |  |  |  |  |  |
| 858381 | Student 858381 | 6 | M | 4 | 19/03/01 |  |  |  |  |  |
| 858274 | Student 858274 | 7 | M | 4 | 07/07/00 |  |  |  |  |  |
| 858282 | Student 858282 | 1 | M | 4 | 09/01/01 |  |  |  |  |  |
| 858290 | Student 858290 | 2 | M | 4 | 02/06/00 |  |  |  |  |  |
| 858464 | Student 858464 | 3 | M | 4 | 07/11/00 |  |  |  |  |  |
| 858308 | Student 858308 | 4 | F | 4 | 25/05/01 |  |  |  |  |  |
| 858316 | Student 858316 | 5 | F | 4 | 25/01/01 |  |  |  |  |  |
| 858498 | Student 858498 | 6 | F | 3 | 28/02/01 |  |  |  |  |  |
| 858399 | Student 858399 | 7 | M | 9 | 03/04/01 |  |  |  |  |  |
| 858324 | Student 858324 | 1 | M | 4 | 27/06/01 |  |  |  |  |  |
| 858332 | Student 858332 | 2 | M | 4 | 28/10/00 |  |  |  |  |  |
| 858407 | Student 858407 | 3 | M | 4 | 30/10/00 |  |  |  |  |  |
| 858472 | Student 858472 | 4 | M | 4 | 21/08/00 |  |  |  |  |  |
| 858480 | Student 858480 | 5 | M | 4 | 22/01/00 |  |  |  |  |  |
| 858340 | Student 858340 | 6 | F | 1 | 14/12/00 |  |  |  |  |  |
| 858506 |  | 7 |  |  |  |  |  |  |  |  |
| 858514 |  | 1 |  |  |  |  |  |  |  |  |
| 858522 |  | 2 |  |  |  |  |  |  |  |  |

## Appendix 7 <br> Variables in File

Table A7.1 File Name: NAPSL2012_PV_2013-03-11.sav

| Variable names | Description |
| :---: | :---: |
| BarcodeID | Student Barcode |
| Booklet | Booklet Number (Objective items) |
| PAQ01 to PBQ10 | Practical Tasks Items |
| IDoB532 to IDOB406 | Objective Items |
| Geolocation | Geolocation Code |
| State1 | State regression variable 1 |
| State2 | State regression variable 2 |
| State3 | State regression variable 3 |
| State 4 | State regression variable 4 |
| State5 | State regression variable 5 |
| State6 | State regression variable 6 |
| State7 | State regression variable 7 |
| Gender1 | Gender regression variable 1 |
| Gender2 | Gender regression variable 2 |
| ATSI | ATSI recode for stratification |
| ATSI1 | ATSI regression variable 1 |
| ATSI2 | ATSI regression variable 2 |
| Sector1 | Sector regression variable 1 |
| Sector2 | Sector regression variable 2 |
| Geolocation1 | Geolocation regression variable 1 |
| Geolocation2 | Geolocation regression variable 2 |
| LBOTE1 | LBOTE regression variable 1 |
| LBOTE2 | LBOTE regression variable 2 |
| Prac | Practical Task identifier |
| ObjectiveTest | Did not sit code for Objective Test |
| PracticalTask | Did not sit code for Practical Task |
| SchoolID | School ID |
| State | State |
| Stratum | Stratum Identifier |
| Participant | Participant flag for weight |
| NonParticipant | Non-Participant flag |
| NonInclusionCode | Non inclusion code |
| FinalStudentWeight | Final Student Weight |
| FinalClassWeight | Final Class Weight |
| FinalSchoolWeight | Final School Weight |
| FinalWeight | Final Weight |
| SampleZone | Sampling Zone |
| PairNum | Sampling Zone Pair identifier |
| DblWgtPairNum | Sampling Zone Pair weight flag |
| RWo - RW318 | Replicate weight o to 318 |
| RUMMWLE | Weighted Likelihood estimate from RUMM2020 |

Table A7.1 (Cont.) File Name: NAPSL2012_PV_2013-03-11.sav

| Variable names | Description |
| :--- | :--- |
| SchWleRUMM | School Mean WLE from RUMM2020 |
| Free_PV1 - PV10 | EAP value |
| EAP | EAP SE Value |
| EAP_SE | 2012 PV1 -10 (on 2006 scale) |
| PV1- PV10 | 2012 Level for PV1 - 10 |
| Level1 - Level 10 | School Year Level |
| YearLevel | Student Gender |
| Gender | Student Date of Birth |
| DOB | Country of Birth Code |
| CountryBirth | ATSI Code |
| AtsiID | Parent 1 School Education code |
| SECodeP1ID | Parent 2 School Education code |
| SECodeP2ID | Parent 1 non-School Education code |
| NSECodeP1ID | Parent 2 non-School Education code |
| NSECodeP2ID | Parent 1 Occupation Code |
| OccupationP1 | Parent 2 Occupation Code |
| OccupationP2 | Language Background of Student |
| LboteSID | Language Background of Parent 1 |
| LboteP1ID | Language Background of Parent 2 |
| LboteP2ID | Special Education Needs code |
| SENCode | Objective Test non-inclusion code |
| ObjNonInclusionCode | Sractical Task non-inclusion code |
| PracNonInclusionCode |  |
| Sector |  |

## Appendix 8 ConQuest Control File for Producing Plausible Values

Table A8.1 File Name: NAPSL2012_Produce_2012_PV.cqc


```
set constraint=none;
set n_plausible=10;
caseweight FinalWeight;
key 11111111111112311341113111111112113211434111211111411212131111311143211211111211112142142141341
11311141413341311 ! 1;
```



```
xxx2xxxyxxyxxxxxx ! 2;
codes 0,1,2,3,4,5,7,9,A,B;
import anchor_param << CalibrationSample.anc;
model booklet + item + item*step;
regression
    schoolmeanWLE
    stateNSW
    stateNT
    stateQLD
    stateSA
    stateTAS
    stateVIC
    stateWA
    sectorG
    sectorI
    geoProvincial
    geoRemote
    gender2
    gender9
    atsi1
    atsi9
    lbote1
    lbote9 ;
```

```
set warnings = no;
estimate ! iterations=2000, fit=no, nodes=200;
show !estimate=latent >> NAPSL2012_PV_Check_2013_03_14.shw;
itanal >> NAPSL2012_PV_Check_2013_03_14.itn;
show cases !estimate=latent >> NAPSL2012_PV_Check_2013_03_14.pls;
show cases !estimate=wle >> NAPSL2012_PV_Check_2013_03_14.WLE;
```


[^0]:    1 By definition, DIF refers to groups of students responding to an item differently, after adjusting for the groups' overall abilities. For example, if a group of boys and a group of girls have the same mean ability, but the probability of success on an item for the girls is higher (or lower) than the probability of success for the boys, then the item exhibits gender DIF. DIF does not refer to the difference in raw percentages correct for the groups, since these differences could be due to the fact that the groups have varying abilities. In other words, DIF examines the performance of a group on an item relative to the group's performance on other items. In this respect, a study of DIF shows the relative differences in performance on items in one test. DIF does not show 'absolute' differences in performance between two groups of students.

[^1]:    2 For example, it may well be the case that girls and boys do not perform in the same way across content areas in a subject domain, and such differential performance may be expected. Thus, judgments should be made based on the importance of the skills tested in the specific items, and whether the inclusion of items showing gender DIF will bias the results in ways that are not consistent with the aims of the assessment.

[^2]:    1 Stratification involves ordering and grouping schools according to different school characteristics (e.g. state, sector, geolocation) which helps ensure adequate coverage of all desired school types in the sample.
    2 The school measure of size is related to estimated enrolment size of Year 6 students at the school.

[^3]:    Note: Some percentages may not add up to 100 due to rounding.

[^4]:    3 The design effect is the ratio of the sampling variance, under the method used, to the sampling variance if a simple random sample had been chosen. That is, design effect is a measure of the loss of sampling efficiency.

[^5]:    4 As per MCEECDYA’s definition.
    5 The original Year 6 (gro6) variable was used to estimate the total number of students overall and per stratum. For the sample selection, the Year 6 estimated enrolment size (gro6) was initially rounded to the nearest whole number for each school.

[^6]:    1 see PISA 2009 Technical Report, Chapter 8: Survey Weighting and the Calculation of Sampling Variance (OECD 2012, p. 121) and TIMSS 2007 Technical Report, Chapter 9: Sampling Weights and Participation Rates (IEA 2009, p. 167)

[^7]:    2 These are the absent and refusal students and does not include exclusions, such as functionally disabled.

[^8]:    Each 'X' represents 77.9 cases

[^9]:    1 In comparison, the reported reliability for PISA 2009 science was 0.89 . Reported reliability for TIMSS 2007 Grade 6 and Grade 9 was 0.80 and 0.84 respectively.

[^10]:    1 Because of the constraints of large-scale testing, PISA was not able to include performance tasks such as conducting investigations. Consequently, its definition of scientific literacy omitted reference to investigating. The word 'investigate' was inserted into the definition for the purposes of NAP-SL, as the sample testing methodology allowed for assessments of students' ability to conduct investigations.

[^11]:    1 The number of sampled schools in Table A3.1 differs slightly from those presented in Table A3.4 in some jurisdictions. This difference is due to the rounding of estimates provided (to end up with whole school numbers) and the adjustment of the measure of size for very large schools (so that very large schools are not selected more than once) when drawing the sample. Not all the sampled schools have participated. Of these 633 schools, 16 schools did not participate in the testing (and could not be replaced).

